
Solving Logistic Problem with
Multi-Agent System

Conducted in collabration with the Odense Steel Shipyard Group

Ali Cevirici
cevirici@mip.sdu.dk

Henrik Møller-Madsen
henrikmm@mip.sdu.dk

Master Thesis in Computer Systems Engineering
The Maersk Mc-Kinney Moeller Institute - MIP

University of Southern Denmark - SDU

Supervisor: Kasper Hallenborg
External supervisor: Niels J. Jakobsen

May 11, 2007

Abstract

Danish as well as international corporations increasingly notice that they
are operating in dynamical environments, wherein high demands to flexi-
bility and reorganization capabilities are set. Demands, which are initial-
ized partly coursed by an increasing competition, resulting from a still
faster evolution of technology and varying demands from customers as
well as the internal distribution of work.

The Odense Steel Shipyard (OSS) is one of the companies facing this ten-
dency by their logistic problem, concerning transportation of large ship
blocks locally at the shipyard. OSS is taking part in a consortium, with
other leading companies and research institutes in Denmark; The DECIDE
project. The objective of DECIDE is to investigate the Multi-Agent technol-
ogy and emulation.

Over the past decades the abstraction level of software engineering have
progressed in order to model complex and large-scale problem domains,
wherein human actors today play an important role.

This thesis explores how to adapt multi-agent technology to solve the logis-
tic planning at OSS. Two Multi-Agent Systems(MAS) have been designed
in the DECAF and Cougaar frameworks respectively, and a 3D simulation
model of the OSS domain was developed.

Acknowledgements

We will like to thank all the people at OSS that have helped us in this the-
sis project. Special thanks to Henning Klitten Jensen, who is a B-planner at
OSS, for providing the data we needed in order to design the simulation
model, also a special thanks to our external supervisor Niels J. Jakobsen for
his assistance at OSS. Furthermore we would like to thank Claus Rønaa(D-
planner) for letting us whatch him in action, and Ole T. Sørensen(C-planner),
for letting us attend to some of his morning meetings at OSS. We will also
like to thank everyone in the DECIDE project, who has contributed to our
project with input and disscussion at the DECIDE seminars, especially Sim-
Con for giving us basic insight in AutoMod.

Last, but not least, we would like to send a special thanks to our supervi-
sor Kasper Hallenborg, for his guidance, advice and patience in this thesis
project.

2

ii

Contents

I Background 1

1 DECIDE Project 2
1.1 Partners . 2
1.2 Cases . 5

2 Project Description 8
2.1 Case study . 8
2.2 Researching and understanding the case 10

2.2.1 Planning and logistics 10
2.2.2 The B-plan . 11
2.2.3 The C-plan . 12
2.2.4 The D-plan . 13
2.2.5 Areas and Production Flow 15

2.3 Domain Entities . 16
2.3.1 Transportation vehicles 17
2.3.2 Storage locations . 18
2.3.3 Ship blocks . 19
2.3.4 Buildings . 20
2.3.5 The road system . 20

2.4 Overall system requirements 21
2.5 Demarcation of project . 21

2.5.1 Objectives . 22
2.6 Project Workflow . 23

3 Related Work 24
3.1 Coordinating Mutually Exclusive Resources using GPGP . . 24
3.2 The Advanced Logistics Technology project 25
3.3 The Ultra*Log program . 27
3.4 DVMT . 29
3.5 ACROSS . 30
3.6 Summary . 32

iii

iv CONTENTS

II Analysis 35

4 Simulation 36
4.1 What is Simulation? . 36
4.2 Simulator requirements . 37
4.3 Simulation tools . 38

4.3.1 AutoMod . 39
4.3.2 Dymola . 40
4.3.3 GoldSim . 41
4.3.4 JavaSim . 42
4.3.5 Micro Saint . 42
4.3.6 Simcad Pro . 43
4.3.7 SimCreator . 44
4.3.8 Simprocess . 46
4.3.9 Simul8 . 47
4.3.10 Renque . 48

4.4 Summary . 49

5 Multi-Agent System 52
5.1 What is an Agent? . 52

5.1.1 Reactive Agents . 54
5.1.2 Proactive Agents . 54
5.1.3 Social Agents . 56
5.1.4 Cognitive Agents . 56

5.2 The Agent Environment . 57
5.3 What is a Multi-Agent System? 57
5.4 The AEIO paradigm . 58
5.5 BDI Agent Architecture . 59
5.6 Organization of Agents . 61
5.7 Agent Interaction . 61

5.7.1 KQML . 63
5.7.2 FIPA-ACL . 65
5.7.3 Publish-Subscribe model 67

5.8 Framework requirements . 68
5.9 Suitable Frameworks . 69

5.9.1 A-globe . 69
5.9.2 AgentBuilder . 70
5.9.3 Cougaar . 71
5.9.4 DECAF . 72
5.9.5 JACK . 73
5.9.6 JADE . 74
5.9.7 Jason . 77
5.9.8 MadKit . 78
5.9.9 MPA . 78

CONTENTS v

5.9.10 ZEUS . 80
5.10 Summary . 82

6 Middleware 84
6.1 Definition and middleware types 84
6.2 The need for a Middleware Application 84
6.3 Types of Middleware . 86
6.4 Middleware Type alternatives for AutoMod 87

III Design 89

7 Data structures 90
7.1 Graph Representation . 90
7.2 TAEMS . 93

8 Algorithms 96
8.1 Path-finding basics . 96
8.2 Breadth-First Search . 96
8.3 A* Search . 97
8.4 Dijkstra’s algorithm . 98
8.5 Generalized Partial Global Planning 100

8.5.1 The Local Scheduler 101
8.5.2 GPGP Coordinating Mechanisms 101

9 Solution Strategies 104
9.1 Organization of agents . 104

9.1.1 Planner Agents . 106
9.1.2 Kamag Vehicle Agents 107
9.1.3 The Coordinator Agent 108
9.1.4 Alternative agent placements 108

9.2 Agent Interaction . 109
9.3 Agent Environment . 109
9.4 Finding The Shortest Path . 111
9.5 Find The Nearest Location . 111
9.6 Conflict Resolution . 113
9.7 Coordination of transports . 114
9.8 Summary . 115

10 Simulation Model 117
10.1 Functional requirements . 117
10.2 Elements in a manufacturing system 118
10.3 Modeling the physical elements 119

10.3.1 Ship Blocks Design . 119
10.3.2 Buildings . 122

vi CONTENTS

10.3.3 The road system . 123
10.4 Modeling the virtual control 125

10.4.1 Controlling KAMAG vehicles 125
10.4.2 Controlling queues . 127
10.4.3 External access to simulation model 127

10.5 Placing the physical elements 128
10.6 Communication . 131

11 DECAF 134
11.1 Agents . 134
11.2 Agent Capabilities . 134

11.2.1 C-planner . 135
11.2.2 D-Planner . 137
11.2.3 KAMAG . 138
11.2.4 Init Agent . 140
11.2.5 Communication Agent 141

12 Cougaar 145
12.1 A brief overview of the Cougaar framework 145
12.2 Cougaar Methology . 146
12.3 Agent Enumeration . 146
12.4 Role/Relationship Analysis 148

12.4.1 Kamag Vehicle Agent 148
12.4.2 Coordinater Agent . 148
12.4.3 Planner Agent . 148

12.5 Plugin Enumeration . 149
12.6 Publish/Subscribe Analysis 152
12.7 Task Grammer . 154
12.8 Plan Element Map . 154
12.9 Asset/Propety Analysis . 158
12.10Execution Monitoring/Dynamic Replanning 158
12.11Node analysis . 159
12.12The final design . 159
12.13Evaluation of the Cougaar framework 161

13 Middleware 162
13.1 Feeder Mode . 163
13.2 Socket Mode . 165
13.3 Class Diagram . 168

CONTENTS vii

IV Implementation and Test 170

14 Implementation 171
14.1 AutoMod . 171

14.1.1 Queue logic . 171
14.1.2 Vehicle logic . 172
14.1.3 Time event generation 173

14.2 Middleware . 173
14.2.1 Distance calculation of neighboring control points . . 173
14.2.2 Coordinate Calculation of Control Points 174
14.2.3 Middleware communication and reflection 179

14.3 DECAF . 181
14.3.1 Modifications to the DECAF framework 181
14.3.2 Running DECAF from Eclipse with ANT 183
14.3.3 Message sending in DECAF 183

14.4 Cougaar . 186
14.4.1 Property groups and Assets 186
14.4.2 Organizing agents . 187
14.4.3 Interaction . 188
14.4.4 Environment and RoutePlanner 189

15 Test 191
15.1 Simulation . 191

15.1.1 Test case : Create ship block 191
15.1.2 Test case : Remove ship block 192
15.1.3 Test case : Transport ship block 192
15.1.4 Test case : Painting of ship blocks at painting halls. . 193

15.2 DECAF . 193
15.2.1 Start and initialization 193
15.2.2 Requesting transports 194

15.3 Cougaar . 195
15.3.1 Test case : controlling basic functionality 195

V Reflection and Future Work 196

16 Discussion and Conclusion 197
16.1 Alternative approaches . 197

16.1.1 Overall alternatives . 197
16.1.2 Alternative Agent Organization 199

16.2 AutoMod . 200
16.3 DECAF . 201
16.4 Cougaar . 202
16.5 Middleware . 203

viii CONTENTS

16.6 The learning process . 204
16.7 Future Work . 204

VI Appendix 206

A Glossary 207
A.1 Acronyms . 207
A.2 English-Danish Translations 208

B Research Phase 210
B.1 Aerial Overview of OSS . 210
B.2 Miscellaneous problems . 211
B.3 Production Flow . 211

C Example of a C-plan Dayreport 213

D DECAF 215
D.1 An overview . 215
D.2 The architecture . 216
D.3 Plan Editor . 218

D.3.1 Starting, Editing and Generating 220

E COUGAAR 223
E.1 What Kind Of Problem is Suitable to a Cougaar solution? . . 223
E.2 Architecture . 223
E.3 Cougaar Agents . 224

E.3.1 Blackboard . 225
E.4 Component Model . 227

F Database 229
F.1 Tables and their content . 229
F.2 MySQL Server Installation Guide 232

F.2.1 Setting up the MySQL ODBC Connector 233
F.2.2 Howto insert Ship Block Data into Database 234

G Using Automod 236
G.1 Getting started . 236

G.1.1 New project . 236
G.1.2 Saving Your Project Correctly 236
G.1.3 Saved project . 237

G.2 Loads . 237
G.3 Process . 239
G.4 Queues . 239
G.5 Variables . 240

CONTENTS ix

G.6 Functions . 241
G.7 Source files . 241
G.8 Placing your graphics . 243

H Automod ActiveX API 245
H.1 CallFunction method . 245
H.2 CloseModel method . 246
H.3 DisplayView method . 246
H.4 GetVariable method . 247
H.5 OpenLogFile method . 248
H.6 OpenModel method . 248
H.7 SetVariable method . 250

I Middleware Classes 251
I.1 Program . 251
I.2 Mode . 251
I.3 Feeder . 252
I.4 SocketComm . 256
I.5 AmodRunX . 259
I.6 Database . 262
I.7 ShipBlock . 264
I.8 CommaStringParser . 265

J Journal 266

K Source code 268
K.1 Reading control point and neighbours from XML file 268
K.2 Getting and inserting control point distances 269
K.3 Coordinate of control point on arc path 270
K.4 Coordinate of control point on straight line path 271
K.5 Middleware socket communication and reflection 272
K.6 Middleware AutoMod communication and reflection 274
K.7 Comma string parser . 275

List of Figures

1.1 Grundfoss . 3
1.2 BHS hardware setup example 5
1.3 Part of the anodizing plant at B&O 6
1.4 Conveyor belt at LEGO, simulated with SimCon Experior . . 6
1.5 A KAMAG vehicle transporting a ship block 7

2.1 Aerial overview of the road system at OSS 9
2.2 Hierarchical scheduling structure 11
2.3 Extract of B-plan . 12
2.4 C-planners negotiating with D-planner to fulfill their needs . 13
2.5 Aerial photo of the unit hall and road T111 15
2.6 Abstract Overview of OSS . 16
2.7 KAMAG - transporting a ship block 17
2.8 Storage location V131 at OSS 18
2.9 Building with storage at OSS 18
2.10 A steel section . 19
2.11 Steel sections assembled at the dock 19
2.12 Container ship assembled at the dock 19
2.13 A paint hall - painting ship blocks 20
2.14 The South Hall - Producing ship blocks 20
2.15 The overall system . 22
2.16 Project Workflow . 23

3.1 Architecture of an ALP Cluster 27
3.2 Example of an expanded task OR-graph 27
3.3 Example of military network being compromised 28
3.4 Improved stress result spanning from 2000 to 2003 29
3.5 An example of inconsistent local interpretations 30
3.6 ACROSS scenario. The geography of the island is modelled

after the real Java island in Indonesia, with necessary simpli-
fications. 31

3.7 An ACROSS location agent and three transporter agents . . 32
3.8 An ACROSS driver agent . 32

x

LIST OF FIGURES xi

4.1 AutoMod simulation model of an automobile factory 39
4.2 A robot simulated in Dymola 40
4.3 Screenshot of GoldSim . 41
4.4 Screenshot of Micro Saint . 43
4.5 Screenshot of Simcad Pro . 44
4.6 Screenshot of SimCreator . 45
4.7 Creating models with Simprocess 47
4.8 Screenshot of a Simul8 model 48
4.9 Renque simulation model of a shopping centre 49

5.1 An agent in its environment. The agent takes sensory input
from the environment and produces as output actions that
effect it. 53

5.2 A reactive agent perceives its environment, and reacts with
actions, that effects the environment. 54

5.3 A proactive agent perceives its environment, and acts ac-
cording to its goal-directed behaviour. 55

5.4 Social agents, which has the ability to interact. 56
5.5 MAS BDI architecture . 59
5.6 . 62
5.7 A KQML message . 65
5.8 A FIPA-ACL message . 66
5.9 FIPA Contract Net Interaction Protocol 68
5.10 A-globe system architecture 70
5.11 AgentBuilder agent architecture 71
5.12 Cougaar Architecture . 72
5.13 Decaf architecture. Agents communicate with KQML mes-

sages. 73
5.14 JADE Containers and Platforms 75
5.15 JADE agent life cycle . 76
5.16 MPA single planning cell . 79
5.17 ZEUS: functional groups of the class libary 81
5.18 Architecture of a generic ZEUS agent 82

6.1 System . 85
6.2 System with Feeder . 85
6.3 Complete System . 86
6.4 Middleware types . 87

7.1 A weighted graph. Subpart of the graph in figure 9.4. 91
7.2 The adjacency lists of the graph in figure 7.1 92
7.3 An example of a TAEMS task structure 94

8.1 An example of breadth-first search, and the nodes are num-
bered in the order of the search 97

xii LIST OF FIGURES

8.2 An example of A* search. All edges have a cost, and the most
thick path indicate the shortest path from A to B. 99

8.3 Example of Dijkstraś algorithm. The shortest-path estimate
are shown in the nodes, and shaded edges indicate prede-
cessor values. Black nodes are in set S, and white nodes are
in set Q = V-S. The last figure f shows the value d for every
node. 100

9.1 Geographical placement of various C-planners 105
9.2 Agent Organization showing the relation between PAs, the

CA, and the KVAs. Planner agents can communicate with
each other, and with the CA. The CA can communicate with
any PA and any KVA, and each KVA can communicate with
each other. 106

9.3 Example of KVA perception, where all locations within a dis-
tance of two locations from the KVA are included. The grey
nodes(loactions) indicate the KVA perception 108

9.4 Graph representation of the Agent environment. All nodes
are control points where Kamag vehicle Agents (KVA) can
travel between. Red nodes indicate storage locations. Green
nodes indicate painting halls. Blue nodes indicates produc-
tion and equipment halls. Yellow nodes indicate parking lots
for KVAs. 110

9.5 Class diagram showing associasions between entities in a
graph . 111

9.6 Example of path interference between two KVAs route. The
route of the first KVA is red, and the route for the second
KVA is marked with blue color 112

9.7 Example of a minimum spanning tree. The cost is written in
the nodes, and the nodes are random numbered, from CP1
to CP7, the source node S indicates where the tree spans from 113

9.8 Control point from figure 9.7 sorted in ascending order . . . 113
9.9 Conflict solving with socializing. The KVA with the blue route,

redirects to the first location not in the route of the other
KVA(red route) . 114

9.10 Conflict solving with socializing. The KVA with the red route
has passed the KVA with the blue, which perceives this in its
environment and continues on its route. 114

10.1 The final Simulation Model of the OSS domain. Storage loca-
tions, buildings, KAMAG vehicle and shipblocks are modelled.118

10.2 Design of a ship block frame in ACE 121
10.3 The ship block in color . 121
10.4 ACE Build Window for a ship block 121

LIST OF FIGURES xiii

10.5 Design of Building Frame . 122
10.6 Design of Building in Color 122
10.7 Build Window in ACE . 123
10.8 Aerial Photograph of OSS . 123
10.9 Simulation Design of OSS . 123
10.10Path Mover Menu . 124
10.11Draw the roads as lines . 124
10.12Road system design of OSS 125
10.13Process P_kamag4843 . 126
10.14Process P_V122 . 127
10.15Autocad file gives overview of OSS 129
10.16Create a new system . 129
10.17Menu in a static system . 129
10.18Edit Object Graphics . 130
10.19Choosing picture unit . 130
10.20Static System with OSS . 131
10.21ActiveX Overview . 133

11.1 C-planner Input GUI . 135
11.2 The Tasks and Actions that the C-planner can achieve 136
11.3 D-planner Coordination of Transportation Tasks 137
11.4 Flow diagram for collection of transportation request 138
11.5 The Tasks and Actions that the D-planner can achieve 138
11.6 KAMAG task flow 1 . 140
11.7 KAMAG task flow 2 . 140
11.8 The Tasks and Actions that the KAMAG can achieve 141
11.9 The Tasks and Actions that the Init Agent can achieve 141
11.10The GUI for the init agent . 142
11.11The Tasks and Actions that the Communication Agent can

achieve . 144

12.1 Cougaar Agents is composed of plugins. The Plugin sub-
scribes/publishes to a common agent blackboard 146

12.2 Cougaar Design Methodology Workflow 147
12.3 Agent enumeration . 148
12.4 Deadline scoring function : “At 10:00” 154
12.5 Planelement Map for the PA 156
12.6 Planelement Map for the CA 157
12.7 Planelement Map for the KVA 157
12.8 Dynamic replanning and execution monitoring 159
12.9 Node with Agents . 160
12.10Planner GUI . 160

13.1 State diagram for the Middleware Application 162

xiv LIST OF FIGURES

13.2 Middleware Mode Selection GUI Window 163
13.3 Feeder Mode use cases for the User 163
13.4 Middleware Feeder Mode GUI Window 164
13.5 Middleware Socket Mode GUI Window 165
13.6 Socket Mode use cases . 165
13.7 Socket Mode use cases . 166
13.8 Drive to Location State diagram for Communication agent . 167
13.9 Middleware Class Diagram 168

14.1 Part of control point neigbour table 174
14.2 GUI window to add neighbours and their distances 175
14.3 Example path system with control points 175
14.4 Arc path properties . 176
14.5 Straight line path properties 176
14.6 Control point located on an arc path 177
14.7 Control point located on a straight line path 178
14.8 Eclipse ANT window . 184

15.1 HalSyd C-Planner transportation requests 194
15.2 HalOst C-Planner transportation requests 195

16.1 Alternative solution: MAS with virtual simulator 198
16.2 Alternative solution: MAS connected with simple simulator 198
16.3 Alternative solution: MAS with integrated simulator 199
16.4 The AutoMod simulation model of OSS 200

B.1 Aerial overview of OSS. Areas are marked with squares and
halls with ellipses . 210

C.1 dayreport . 214

D.1 DECAF overview . 215
D.2 Decaf architecture . 216
D.3 DECAF Task example . 219
D.4 DECAF Start Window . 220
D.5 Adding and item . 221
D.6 Generating code . 221

E.1 Cougaar Architecture . 224

F.1 MySQL Sign Up Window . 233
F.2 Data Sources Window . 233
F.3 Create New Data Source Window 234
F.4 Connector/ODBC Window 234
F.5 Adding ship blocks from XML file 235

LIST OF FIGURES xv

G.1 Automod Environment . 237
G.2 Process system . 237
G.3 The loads window . 238
G.4 Defining a load type . 238
G.5 The queues window . 240
G.6 Define a queue . 240
G.7 Variables . 240
G.8 The function window . 241
G.9 Define a function . 242
G.10 The source file window . 242
G.11 Declare function name . 242
G.12 Automod Editor . 243

List of Tables

2.1 Specifications of the KAMAG vehicles at OSS 14
2.2 Combinations used to carry heavy ship blocks of ca. 1000 ton 14

4.1 Comparing simulator features 51

5.1 Some KQML reserved performatives 64
5.2 KQML reserved parameters 64
5.3 Some FIPA-ACL performatives 65
5.4 FIPA Interaction Protocols . 67
5.5 Features of suitable MAS frameworks 83

7.1 The adjacency matrix of the graph in figure 7.1 92

10.1 Load attributes . 120
10.2 AutoMod ActiveX methods and their description 132
10.3 AutoMod ActiveX properties and their description 132
10.4 AutoMod ActiveX events and their description 132

11.1 C-planner Tasks . 136
11.2 D-planner Tasks . 139
11.3 Init Agent Tasks . 142
11.4 Communication Agent Tasks 143

12.1 Role/relationship overview 149
12.2 Plugins required in the OSS society 153
12.3 Publish/subscribe analysis . 155
12.4 Task Grammar . 155
12.5 Pros and Cons for the Cougaar framework 161

13.1 Middleware Class Descriptions 169

15.1 Test case ship block . 191

F.1 A part of the areadata table 229
F.2 A part of the blockdata table 230

xvi

LIST OF TABLES xvii

F.3 A part of the grandblockdata table 230
F.4 A part of the controlpoint table 231
F.5 A part of the distance table 231
F.6 The kamag table . 232
F.7 A part of the path table . 232

H.1 Description of syntax elements for CallFunction method . . 245
H.2 Description of syntax elements for CloseModel method . . . 246
H.3 Description of syntax elements for DisplayView method . . 247
H.4 Description of syntax elements for GetVariable method . . . 247
H.5 Description of syntax elements for OpenLogFile method . . 248
H.6 Description of syntax elements for OpenModel method . . . 249
H.7 Description of syntax elements for SetVariable method . . . 250

Part I

Background

1

Chapter 1

DECIDE Project

The DECIDE project is a consortium which focuses to establish a de-
velopment co-operation between the partners of the consortium, re-
garding Multi-Agent Systems(MAS) and Emulation as paradigms

for a more robust optimization of production and logistic [4]. The purpose
is to investigate multi-agent systems an emulation in a theoretical level to
show that these technologies, compared to traditional planning and control
systems, creates more robust and optimal plans. This investigation should
be visualized to the people in the production environment, from decision-
makers to daily users.

1.1 Partners

In this section, we will give a brief description of the partners in the DE-
CIDE project.

• RoboCluster is a growth initiative for the robotics and automation
industry in Southern Denmark1.

• FKI logistex is one of the companies that are leading in the area of
high capacity baggage handling systems for airports. It is one of the
few companies which can deliver complete solutions to large airports.

• Bang & Olufsen produces audio- and video equipments which are
known for:

– Outstanding Performance

– Durability

– Classic Design

– Long-term Reliability

1http://www.robocluster.com/english/index_html

2

1.1. PARTNERS 3

Figure 1.1: Grundfoss

The aluminium parts that are used in the surface of the products has
true Bang & Olufsen characteristics .The machining, polishing and
anodising of aluminium have been a strategic competence within the
company for many years [5].

• LEGO has it’s head office in Billund, Denmark. The name ’LEGO’ is
an abbreviation of the two Danish words "leg godt", meaning "play
well"2. The company produces LEGO toy bricks for children, which
are sold in more than 130 countries.

• Odense Steel Shipyard(OSS) is one of the worlds most modern ship-
yards, which is able to build any kind of ship to the international
shipping. OSS has through the last couple of years mainly build large
container ships. OSS is a part of the OSS Group which contains fol-
lowing four shipyards

– Odense Steel Shipyard Ltd

– Volkswerft Stralsund GmbH

– Baltija Shipbuilding Yard JSC

– Loksa Shipyard Ltd.

2http://www.lego.com/eng/info/default.asp?page=group

4 CHAPTER 1. DECIDE PROJECT

and one machine factory.

– Balti ES Ltd.

• MESH-Technologies is a software company, that works within the
are of High Performance Computing and Distributed Systems. The
company produces software to classical supercomputers and loosely
cupled systems, including GRID systems and Pervasive Computing.

• The Maersk Mc-Kinney Moller Institute for Production Technol-
ogy(MIP) has the aim to become a highly technological, internation-
ally recognized centre of excellence, where academia and industry
in close collaboration develop new technologies for intelligent au-
tonomous systems3.

• IMADA has kompetences within effective algorithms and high per-
formance computing in the area of computer science.

• The technical faculty at SDU4 has kompetences within hardware
and software development to embedded systems.

• Simcon is a software and consultancy bussiness5 which offers com-
plete knowledge based solutions within the main fields:

– System emulation

– Concept evaluation

– Simulation and Animation

– Optimization

– Software development

– Training

• Danish Technological Institute occupies a crucial position at the point
where research, business, and the community converge. The Insti-
tute’s mission is to promote growth by improving interaction and
encourage synergy between these three areas6.

• Fyn Enterprise Development Centre7 is the host organization for EU
Center Fyn, which has kompetences within project description, iden-
tification of EU-support and funding possibilities, and EU-project ap-
plications.

3http://www.mip.sdu.dk/general_information/
4formerly known as IOT
5http://www.simcon.dk
6http://www.danishtechnology.dk/6158
7Fyns ErhversCenter

1.2. CASES 5

• Grundfos is one of the world’s leading pump manufacturers. The
mission of the company is to develop, produce and sell high quality
pumps and pumping systems world-wide.8

1.2 Cases

Some partners of the consortium has specific cases that will be investigated
during the DECIDE project. These cases are described briefly below.

• FKI logistex
This case concerns Baggage Handling Systems(BHS) for airports. BHS
at airports are generally used for baggage that are received from ar-
riving planes and baggage that are delivered long before departure
by passengers[29]. The baggages in a BHS are transported by totes in
a conveyor system or by Destination Coded Vehicles (DVC). An ex-
ample setup of a conveyor system for a BHS can be seen in figure 1.2.

Figure 1.2: BHS hardware setup example

Many problems can arise in a BHS, which is a very dynamic envi-
ronment, such as delayed arrivals, missing tag codes, flight changes,
break-downs and peak loads.

• Bang & Olufsen
This case concerns the anodizing plant for surface treatment of alu-
minium at B&O. The anodizing plant consist of a bufferline with 55

8http://www.grundfos.com/web/grfosweb.nsf

6 CHAPTER 1. DECIDE PROJECT

baths where elements hang up on element-bars are dipped in. Today
the throughput are 7.5 element-bars per hour. The goal is to reach a
throughput of 8.0 - 8.5 element-bars per hour9. A part of the anodiz-
ing plant is shown in figure 1.3.

Figure 1.3: Part of the anodizing plant at B&O

• LEGO
This case concerns separating a pile of plastic bags containing LEGO
bricks, placed on a conveyer belt as shown in figure 1.4.

Figure 1.4: Conveyor belt at LEGO, simulated with SimCon Experior

9Powerpoint slide with title: Bang og Olufsen Anodiseringsanlæg

1.2. CASES 7

• Grundfos
This case concerns the process of kataforese coating pumps. The metal10

pumps are kataforese coated, by being placed in different kind of
baths with chemical liquids. Two cranes in the production plant moves
bars with pumps and kataforese coates them. The movement of the
cranes are synchronized to avoid collission, but this makes the pro-
duction plant ineffective, because cases arise where only one crane is
coating pumps and the other crane goes through a kataforese process
without any pumps at all.

• Odense Steel Shipyard
This case concerns the coordination of the daily ship block transporta-
tions at Odense Steel Shipyard(OSS). Figure 1.5 shows a KAMAG ve-
hicle, transporting a ship block. This case is investigated by us with
this thesis.

Figure 1.5: A KAMAG vehicle transporting a ship block

10either aluminium or iron

Chapter 2

Project Description

This chapter describes the thesis case, and the investigation of the OSS
problem domain. Furthermore we describe the overall system re-
quirements, and the project demarcation, wherein we state our ob-

jectives with this thesis project. We finalize this chapter with a description
of the project workflow.

2.1 Case study

Danish and international companies see an increasing tendency towards
operation in dynamical environments, wherein great demands to flexibility,
reorganization and adaptation takes place. Requirements which are initial-
ized partly from an increasing competition on the international marked,
with in particular as consequence of a still faster evolution of technology
and varying demands from customers as well as internal departments of
firms.

The Odense Steel Shipyard Group(OSS) experiences the following logistic
problem in the daily scheduled work.

The logistic problem concerns transportation of elements between different
internal locations on OSS. Some elements are produced by OSS while other
elements are being produced externally. All elements go through a process
in the environment at different locations. When assembled all the elements
form a whole ship.

Transportation of elements are conducted using heavy specialized machin-
ery vehicles called KAMAG vehicles. These specialized vehicles have a
payload capacity of approximately 500 ton each, which makes them suit-
able for the given task at OSS.

8

2.1. CASE STUDY 9

The transportation itself is conducted through wide roads, which connects
the different locations, where elements are to be processed or stored away
for future use.

Some road width’s are limited (figure 2.1 shows the road system), resulting
in complicated passage of KAMAG vehicles carrying heavy loads, thus co-
ordination of the vehicles are required.

Figure 2.1: Aerial overview of the road system at OSS

Organization of the transportation is similar to a cab-system. All supervi-
sors also referred to as C-planners, which all lead a well defined area on
OSS, call in every day at approximately 9 o´clock reporting which trans-
portation they need that day. This information is then processed by the
D-planners(usually only one), resources (KAMAG vehicles) are allocated
and coordinated in a logistic plan for that day. The logistic plan is a grand
schedule plan of all transportations, which include information regarding
what ship blocks to collect, where and when to collect them, and where
to place them. The plan is then reported to the supervisors, which gives
them a reference schedule for the rest of the day. Although an overall plan
is formed decentralized changes to the plan are considered inevitable.

Along the day different scenarios will affect the scheduled plan, where the
main scenarios are listed below:

• Production deviation such as delays in production, or if elements are
done prior schedule, thus needing transportation earlier.

• Transport bottlenecks occurs if two or more KAMAG vehicles must
wait on each other. Planning is done to prevent this type of situa-

10 CHAPTER 2. PROJECT DESCRIPTION

tion, but in real life it is practical impossible. Other times a KAMAG
vehicle is forced to pass narrow paths with the greatest precision, in-
creasing transportation time.

• Breakdowns result in an unaccessible KAMAG while it is being re-
paired. The KAMAG is then transported to a special place where it is
repaired. The heavy ship blocks are very hard on KAMAG vehicles,
which is why they breakdown at times.

• Misplacement of other kinds of transportation vehicles also occurs,
which block the traffic of KAMAG vehicles. The solution here is to
find the driver of the vehicle, who is blocking the way and remove the
vehicle. Other times, storage locations are occupied with unreported
scaffolds, meaning that a new storage location must be found for the
ship block, thus replanning is demanded.

Unpredictable events are coordinated with the corresponding C-planners
responsible for the affected areas. Currently it is a problem that conse-
quences of choices are unknown.

2.2 Researching and understanding the case

This section is the result from a data collecting research phase we have con-
ducted at OSS over several months. The current section will serve to give
an overview of the areas on OSS which play an important role in respect
to the current transportation system. In order to make a solution proposal
based on multi-agent technology we will categorize the collected data and
observations from OSS. This section will serve as a preface to the overall
analysis.

2.2.1 Planning and logistics

Building the world’s largest container ships concerns production and mount-
ing of approximately 150.000 steel elements, 30.000 larger components and
11.000 pipes. All together a surface of 390.000 m2 must be painted, 700km
of lines must be welded and 230km of electronic wiring must be mounted.
All this requires planning and logistics1.

Due to the above requirements, OSS has developed their own computer
based planning system called DPS, which is used by planners at OSS to
plan various activities, such as handling manpower as well as area dis-
posal.The program Production Management System (PMS), developed in-
ternally by OSS, is used to manage steel production. In the equipment do-

1http://www.oss.dk

2.2. RESEARCHING AND UNDERSTANDING THE CASE 11

main the system ERP BaaN is used.

The scheduling at OSS is hierarchically structured as seen in figure 2.2.

Figure 2.2: Hierarchical scheduling structure

A grand B-plan has the overall view of ship block flow in the system. The C-
plans contain area specific details regarding inflow and outflow of a given
area. The D-plan is a coordination of transportations from C-plans. In the
following sections we will describe processes in the B-plan, C-plan and D-
plan.

2.2.2 The B-plan

B-planners have got the breadth of view over the transportation on OSS.
They have an idea of which blocks will be transported on which day, but
not at which time. It is the B-planners, who make the B-plan, which con-
tains an overview of all the ship blocks i.e which blocks are done, when
and where. One can according to the B-plan follow any ship block through
the entire ship building production flow. The process can be compared to
assembly or production lines, where all the building blocks are assembled
at certain assembly points(halls and storage locations), and in the end form
a complete ship in the dock.

Our primary contact on OSS regarding the B-plan has been Change Agent
Henning Klitten Jensen. Henning uses a program called DPS, which is used
by B-planners, to design the B-plan. An extract from the B-plan is showed
on figure 2.3.

12 CHAPTER 2. PROJECT DESCRIPTION

Figure 2.3: Extract of B-plan

We will not go into a detailed description of figure 2.3, but merely note that
the B-plan describes the flow of any ship block from supplier to the com-
pleted ship. The B-plan implicit gives a survey of the main transportation
of ship blocks internally at OSS. The C-plans are designed from the foun-
dation formed by the B-plan. In contrast to the B-plan, which provides the
overall view, the C-plans individually covers limited well defined areas on
OSS.

2.2.3 The C-plan

Every C-planner has the responsibility for a specific area at OSS and his
purpose is to coordinate and inspect this area, and to order vehicles to
transport ship blocks to and from his area. In order to secure a smooth
inflow and outflow of ship blocks, C-planners make their own C-plans ½ a
year forward and modifies it as deviations from the scheduled plan occur.
The C-plans are based on the B-plan and adjusted locally by C-planners to
be more realistic. The C-planner inform the Production managers2, if the
C-plan deviates too much from the B-plan.

The C-planners depend on each other’s deadlines, furthermore do C-planners
prioritize transports, depending on where the ship blocks are going to be
transported to/from; e.g. transport of ship blocks to the gantry crane has
higher priority than transport of ship blocks from painting halls to storage
locations.

The C-planner rides his bicycle to check the storage locations, that he is re-
sponsible for, to see which ship blocks are placed where, before he makes
his day-report. The C-planner then holds a meeting with the foremen to

2B-planners

2.2. RESEARCHING AND UNDERSTANDING THE CASE 13

follow-up how far they are from finishing the ship blocks. The meeting are
based on the day-report, and every location in the area, that the C-planner
is responsible for, is gone through one by one. An example of such a report
with placement of ship blocks can be seen on figure C.1 in appendix C.

At the end of the meeting the C-planner contacts the D-planner and orders
transportations of ship blocks for that day. The C-planner is however still
able to cancel/change the order within the day, if the ship block is finished
before/after schedule.

2.2.4 The D-plan

The responsibility of the D-planners are to coordinate all KAMAG trans-
portations at OSS. A typical sequence of requests from C-planners during
one day is seen below and in figure 2.4:

• B6 by phone

• Hal Øst by phone (multiple changes on daily basis)

• Painting hall by e-mail

• B9 by e-mail

• B4 by phone (multiple changes on daily basis)

• Hal Syd by phone

Figure 2.4: C-planners negotiating with D-planner to fulfill their needs

Claus Rønaa is one of the highly skilled D-planners and must keep track
of all transportations. He makes a logistic schedule, which is modified fre-
quently on a daily basis according to deviations received from C-planners.

14 CHAPTER 2. PROJECT DESCRIPTION

Type Vehicle No. Payload
Capacity

Dimension Speed

KAMAG 4843 530 T 9,7m x 13,5m Average 6-7
km/h

KAMAG 4846 450 T 9,7m x 13,5m Average 6-7
km/h

KAMAG 4847 580 T 9,7m x 13,5m Average 6-7
km/h

Tarok 4848 365 T 6,1m x 21m Average 6-7
km/h

Tarok 4849 550 T 6,6m x 20m Average 6-7
km/h

Table 2.1: Specifications of the KAMAG vehicles at OSS

Description Combination Payload
Capacity

Speed

Normal Double 4846 + 4847 ca. 1030 ton ca. 5 km/h
Large Double 4843 + 4847 ca. 1110 ton ca. 5km/h

Table 2.2: Combinations used to carry heavy ship blocks of ca. 1000 ton

Claus has got a lot of experience with scheduling transportations, thus a
lot of his decisions are based on intuition and experience. Whenever he en-
counters new ship blocks, which he has not yet transported before, due to
the fact that new ships are being build, he takes a look at the blueprint of
the block in question and reads the specification. This information tells him
how ship blocks should be placed and how they should be supported. Ta-
ble 2.1 lists the various KAMAG vehicles, that are being used to transport
the many ship blocks. KAMAG vehicles can be combined to increase the
overall payload capacity as seen in table 2.2.

A D-planner must keep track of all transportations, to make an overall
schedule, trying to fulfill the requirements of the C-planners. As mentioned
earlier the plan is destined to undergo frequent changes due to the dynam-
ical environment. Alterations in the plan given by C-planners, must also
reflect changes in the overall schedule of transportation for that given day.

To navigate KAMAG vehicles under the transportation of heavy loads,
trucks are being used. Trucks at OSS have the following numbers: 4783,
4789, 4793 and 4794.

In the unit hall(N4), seen in figure 2.5 ship blocks are equipped. The space
in the unit hall is limited, such that a KAMAG vehicle only can access the

2.2. RESEARCHING AND UNDERSTANDING THE CASE 15

blocks from one side of the hall, which results in an operation similarly
to a stack operation. Like when you have a stack of plates, you must first
remove the top plate before moving the second et cetera. As temporary
storage road T111(see figure 2.5) is used, until the correct block has been
removed from the unit hall, and the correct one is placed inside the unit
hall, thus this operation must be done in the second or third turn usually
after 17 o´clock, since the road will be blocked while this procedure is con-
ducted. After this operation the road is once again cleared.

Figure 2.5: Aerial photo of the unit hall and road T111

2.2.5 Areas and Production Flow

OSS has provided a dxf file (CAD file) containing everything on OSS, such
as buildings, storage locations, bushes, cranes and a lot of other informa-
tion. Much of the mentioned information is of no use to this project, thus
the amount of information in the file must be limited. Only buildings, stor-
age locations and roads, where KAMAG vehicles have access are of interest
to this project, thus essential information have been extracted from this file
into a simplified file, containing only the following entities of interest:

• Road (this covers all roads which KAMAG vehicles can safely access)

• Paint hall (building)

16 CHAPTER 2. PROJECT DESCRIPTION

• Hal Syd (building)

• Hal Øst (building)

• Unit hall (building)

• Depository (area)

• Depository with supply (area)

• Area A,B,C,D and E

The Production flow is characterized by a dynamic production course. Steel
plates and profiles are cut and then assembled to sections, which are then
painted, equipped before setting up to a ship in the dry dock. From this
point on the ship will be completed in the equipment quay. The total build-
ing activity is approximately 10-11 months3. The flow of ship blocks at OSS
domain runs through the production steps 1 to 11 seen in figure 2.6, for
more details regarding each production step see section B.3.

Figure 2.6: Abstract Overview of OSS

2.3 Domain Entities

In this section we describe the various physical entities from the OSS do-
main that are relevant to this thesis project, which includes the following:

• Transportation vehicles known as KAMAG vehicles

3source: www.oss.dk

2.3. DOMAIN ENTITIES 17

• Storage locations

• Ship blocks

• Buildings (some for functional purpose others for visualization pur-
pose only)

• The road system

2.3.1 Transportation vehicles

Transportation vehicles called KAMAG vehicles (figure 2.7), are used for
transportation of ship blocks, and have the following physical properties
and features:

Figure 2.7: KAMAG - transporting a ship block

1. A KAMAG can only drive on the road system 4

2. A KAMAG has a max lift capacity, limiting the weight of ship blocks
to be lifted

3. A KAMAG has a maximum payload capacity, limiting the weight of
ship blocks to be transported.

4. A KAMAG can transport one or multiple ship blocks

5. A KAMAG has a maximum velocity, acceleration and rotation speed

6. A KAMAG can rotate 360 degrees with any center point of rotation

4see figure 2.1

18 CHAPTER 2. PROJECT DESCRIPTION

7. By combining two KAMAG vehicles the total lift and transportation
capacity increases, thus adding the capacity of the two KAMAG ve-
hicles

8. A KAMAG can pick up a ship block

9. A KAMAG can put down a ship block

10. A KAMAG can transport a ship block from one location to another

11. A breakdown may happen, forcing the KAMAG out of action

12. A KAMAG requires regularly maintenance, which implicitly puts the
KAMAG out of action

13. A KAMAG can transport another KAMAG in case of breakdown.

2.3.2 Storage locations

Storage locations at the shipyard are used to store ship blocks, waiting
for further processing at another location. Some storage locations are also
used for equipping the ship blocks. Storage locations are mostly outdoors
at OSS as seen in figure 2.8, but in some buildings as seen in figure 2.9, ship
blocks are being build and/or equipped. There are certain properties limit-
ing which ship blocks, that can be placed at a given storage location, those
properties are listed below:

Figure 2.8: Storage location V131 at
OSS

Figure 2.9: Building with storage at
OSS

• A storage location has a specific geographical location.

• Width

• Depth

2.3. DOMAIN ENTITIES 19

• Height (usually unlimited, unless placed under a roof)

• Maximum payload due to the foundation

• Some have supply, such as electricity and gas for welding

2.3.3 Ship blocks

The ship blocks like the one in figure 2.10 are the main entities at OSS in
respect to the transportation problem. The ship blocks are transported from
buildings and storage locations, where they are being produced to other
buildings and storage locations, where they are stored, equipped and/or
painted. The ship blocks progresses through a flow in the system, and are
finally assembled to form a container ship at the dock as seen in figure 2.12,
which is the final destination for every ship block in the OSS domain.

Figure 2.10: A steel section

Figure 2.11: Steel sections assem-
bled at the dock

Figure 2.12: Container ship assem-
bled at the dock

A ship block has the following properties:

20 CHAPTER 2. PROJECT DESCRIPTION

• Height

• Width

• Length

• Weight

• Type (a number indicating, which ship block it is)

• Ship blocks goes through a certain flow in the system

• A grand block is a special type of ship block that is composed from
multiple ship blocks.

2.3.4 Buildings

Some buildings at OSS are of importance in respect to the transportation
problem, such as halls for producing, equipping and painting ship blocks.
A painting hall and a production hall are shown in figures 2.13 and 2.14
respectively.

Figure 2.13: A paint hall - painting
ship blocks

Figure 2.14: The South Hall - Pro-
ducing ship blocks

Following buildings from the OSS domain are of relevance:

• Production halls: B4, B6, B9

• Equipment hall: N4

• Painting halls: Kab1 - Kab8

2.3.5 The road system

Figure 2.1 illustrates where KAMAG vehicles can drive at OSS. Some of the
roads vary in size, meaning that KAMAG vehicles may not be able to pass
each other if the road is to narrow.

2.4. OVERALL SYSTEM REQUIREMENTS 21

2.4 Overall system requirements

The system is intended to support, the daily planning of the internal trans-
portation of ship blocks and more specifically, decision-makers, in deciding
which transportation vehicle to use for transporting a certain ship block
from one location to another at a given time.

This case is part of the DECIDE project as described in chapter 1, which
focuses on the usability of Multi-Agent Systems to solve logistic and pro-
duction related problems. We will therefore approach this case in terms of
multi-agent terminology.

As input to the system, the supervisors also known as C-planners should be
able to request multiple transportations on a daily basis. The system should
then generate a logistic plan, also referred to as a D-plan in the OSS domain.

The system should at all times visualize the current status of domain enti-
ties, such as ship block and KAMAG vehicle placements, meaning the dy-
namic entities in the system. Static entities, such as storage location, build-
ings and the road system, should likewise be visualized at all times. Users
of the system should be able to monitor the consequences of their decisions
online while working. The system should be decentralized, and therefore
function across a local area network.

Data consistency and robustness is of major importance, thus the system
should be reliable even if parts of the system breaks down.

The user interface should be user friendly, such that it can be used by em-
ployees at OSS.

The system should be provided with information regarding the entities that
reside in the OSS domain, such as the initial placement of KAMAG vehicles
and the ship blocks, including their physical properties.

2.5 Demarcation of project

There are many similarities between the agent paradigm and situations
described in the case. Supervisors also known as C-planners, behave like
decentralized agents without a grand overview seeking to fulfill their in-
dividual needs, by negotiating with other supervisors and the service de-
partment, also known as D-planners. Although a grand plan is made by B-
planners, the detailed schedules are designed decentralized by C-planners.

22 CHAPTER 2. PROJECT DESCRIPTION

The OSS domain is complex, very comprehensive and the environment is
unpredictable, thus transportations are associated with deviation. There-
fore we will limit this thesis project to concern the daily coordination of
internal transportation of heavy ship blocks at OSS, that requires KAMAG
vehicles.

An obvious approach to the problem would be seeking to describe the
problem in terms of agents, thus this thesis will seek to solve the logistic
problem at OSS by proposing a solution strategy based on multi-agent ter-
minology.

This thesis seeks to investigate if a MAS can be used to solve the logistic
problem at OSS. We will investigate the MAS terminology, propose a solu-
tion strategy and implement basic concepts from the solution strategy in a
multi-agent system.

Furthermore we will make a 3D simulation model of the OSS domain to
give decision-makers the posibility of identifying the consequences of their
actions including identifying transportation bottlenecks.

As interface between the multi-agent system and the simulation model, we
will design a middleware application. The overall system can be seen in
figure 2.15.

Figure 2.15: The overall system

2.5.1 Objectives

The major objective in this thesis is to design a decision support tool for
coordination of the daily transportations of ship blocks at OSS, based on
emulation and multi-agent technology.

The objective can be categorized into three objectives:

1. Emulation: Design a simulation model of the OSS domain.

2. Multi-agent system: Design a multi-agent system using a MAS frame-
work to handle the logistic planning.

2.6. PROJECT WORKFLOW 23

3. Middleware: Design a middleware application to exchange data be-
tween the simulation model and the multi-agent system.

2.6 Project Workflow

We began this project researching the OSS domain and gathering informa-
tion, interviewing several people, such as B-planners, C-planners and D-
planners, which gave us an understanding of the current situation residing
in the problem domain. We have used the collected information to make a
demarcation of our project, and specified our main focus areas.

In this thesis we will go through several phases as seen in figure 2.16.

In the analysis phase we will investigate the multi-agent terminology, re-
search possible suitable simulation tools, and find out basic knowledge re-
garding middleware applications.

In the design phase we will design a solution proposal in terms of multi-
agent technology, a simulation model of the OSS domain and finally a mid-
dleware application connecting our multi-agent system with the simulation
model.

In the implementation phase we will implement the three subsystems: the
simulation model, the multi-agent system and the middleware application.

In the test phase we test subparts of the overall system and describe their
final status.

A journal concerning interviews, meetings and presentations can be found
in appendix J.

Figure 2.16: Project Workflow

Chapter 3

Related Work

This chapter presents projects, which is related to our thesis project in
one way or another. For each related project we briefly describe the
objectives and content, and finally we summarize how the projects

are related to our thesis project in a summary section.

3.1 Coordinating Mutually Exclusive Resources using
GPGP

The article in [17] approaches a hospital scheduling problem by propos-
ing a multi-agent solution using Generalized Partial Global Planning or
GPGP(described in section 8.5), that preserves the existing human organi-
zation and authority structures. The multi-agent system increases hospital
unit throughout and decreases patient stay time.

The hospital scheduling problem is represented with TAEMS (described in
section 7.2), which is a language for structuring tasks. The tasks that have
to be solved, either have the status “done” or “not done”, meaning that a
task is either completed or not. All tasks must be completed, and there are
no deadlines referring to when a tasks must be completed. Travel times for
patients are not represented in the hospital scheduling problem.

An extension of GPGP with a coordinated mechanism handles mutually ex-
clusive resource relationships. This new mechanism can be applied to any
problem with the appropriate resource relationship, like the other GPGP
mechanisms. The effect of increasing interrelations between tasks performed
by different hospital units are examined with the new mechanism and the
mechanism itself is evaluated in the context of the patient scheduling prob-
lem.

24

3.2. THE ADVANCED LOGISTICS TECHNOLOGY PROJECT 25

A resource manager agent is implemented, which centralizes a bid process-
ing among agents, where the agent with the lowest bid is selected to per-
form the task, but a multi-stage negotiation, where conflicts are bounced
back at the agents for further negotiation, is investigated.

3.2 The Advanced Logistics Technology project

It was in 1996, that DARPA1 started the advanced logistics project(ALP)
with a 80 million dollar budget, aimed at developing the next generation
of logistics systems [6]. The DARPA advanced logistics project investigated
and demonstrated technologies which are expected to make an important
contribution in future transportation and logistics.

Logistics concerns getting the right “stuff” to the right place at the right
time, and major transportation vendors are beginning to require the effi-
cient solution on a minute by minute basis, likewise major coorporate or-
ganizations such as GM and Ford, needs to support a smooth inflow of
production materials as well a smooth outflow, thereby requiring an opti-
mal inventory.

The next generation of logistics systems will be information systems, that
manipulates massive, distributed, logistics databases, and tracks the status
changes of supplies and resources, and furthermore replans as needed in
order to accomplish missions at hand.

The ALP primarily concerns the following three main areas:

1. Rapid Supply: Finding rapid supply is of crucial importance for ev-
ery major organization in order to keep the business running smoothly.
Companies must rely on their suppliers to deliver on time in order
to satisfy their own deadlines to their customers, for instance, an In-
ternet bookseller would not be able to supply books for customers
if it were not able to rapidly find suppliers. The US military could
not function, if it were not able to locate supply vendors for food and
ammunition, hence rapid supply is an important part of the next gen-
eration logistics systems.

2. End-to-End Movement Control: Once suppliers have been found
and has commited to supply, the movement of supplies is considered
to be another major task for most organizations. Today many organi-
zations use a lean inventory approach, which requires carefully coor-
dination between suppliers, customers and transportation vendors.

1Defence Advanced Research Projects Agency

26 CHAPTER 3. RELATED WORK

3. Execution Monitoring: Every optimal plan is destined to undergo
changes in real world application, since plans frequently go wrong
when supply and movements plans are in place, hence monitoring
the state of affairs in order to ensure compliance with the planned
states, is crusial for companies and military organizations. This indi-
cates a requirement for monitoring the state of supply continuously,
detecting deviations, and corrective actions conducted in a timely
manner.

The objectives of the ALP project is to propose description solutions to the
following cases:

1. How to locate available materials

2. How to locate available transportation resources

3. How to locate materials needed to perform a given task

4. How to handle multiple requests to same resource

5. How to monitor state changes

6. How to perform dynamic replanning in a scalable way

7. How to monitor the global status of the supply chain

Figure 3.1 shows the system processes requests; first the cluster interface
passes a request to the Task Expander component. The Task Expander cre-
ates a set of tasks, which must be solved in order for the initial request to
be solved, and creates an OR-graph as seen in figure 3.2. If we consider the
example of sending 50 units of some item “1928282” from Charleston, SC
to Toslic, then we first start by flying from SC to Tuzla, from where we can
either use heavy Equipment Transporters(HET) to transport the items from
Tuzla directly to Toslic, or we can use trucks to transport the items from
Tuzla to Braz, and further from Braz to Tozlic. This example demonstrates
that different paths in the OR-graph corresponds to different sequences of
actions that can be used to satisfy a request. Next, the Allocator component
allocates resources to the task, and computes a set of possible solutions,
which are computed in multiple stages. The Allocator then selects the so-
lutions with the least cost. When the Allocator component has succesfully
done its part, the Assessor component takes over. The Assessor monitors
the generated plan to see if it is on schedule and takes action if the sched-
ule deviates from the plan.

3.3. THE ULTRA*LOG PROGRAM 27

Figure 3.1: Architecture of an ALP Cluster

Figure 3.2: Example of an expanded task OR-graph

3.3 The Ultra*Log program

In 2001 DARPA2 started the Ultra*Log program that corncerned further
development and maintance of the Cougaar Agent Architecture that was
developed for DARPA under the advanced logistics project.

The main objectives of the Ultra*Log program have been the following3:

• Extend and enhance the Cougaar capabilities to achieve the UltraLog
project goals for new robustness, scalability, stability and security ca-
pabilities in a highly chaotic operational environment.

• Generate a set of software products and facilitate their use by the Ul-
traLog community for software design, development, testing and in-
tegration.

2Defence Advanced Research Projects Agency
3http://dtsn.darpa.mil/ixo/programs.asp?id=61

28 CHAPTER 3. RELATED WORK

Figure 3.3: Example of military network being compromised

• Evolve an agent-based architecture and requisite supporting material
to provide a leave-behind capability and enable technology transition
to a broad operational community

From the above mentioned objectives the following were adressed, and the
results are shown in figure 3.4 [30]:

• Robustness: A Cougaar application should survive the loss of any in-
dividual components and/or hardware substrate with minimal loss
of functionality. This includes automatic recovery of lost agents, as
well as various mechanisms to conserve resources and to use redun-
dancies efficiently.

• Security: A Cougaar application should be capable of repelling vari-
ous sorts of electronic attacks, should maintain information integrity,
and should avoid exposing communications as much as possible.

• Scalability: The Cougaar infrastructure should not have any intrinsic
scalability issues. It should be possible to implement Cougaar appli-
cations which scale to the degree that the application logic allows.

The Ultra*Log program seeked to research, develope and demonstrate a
prototype with a society consisting of more than 1000 agents of medium
complexity. The goal was to make the system robust to changes in a chaotic
environment (highly dynamical), that is 90% as chaotic as the most real
world environment, such that it should be operative with a 45% informa-
tion infrastructure loss, with no more than a 20% capability degradation,
and no more than a 30% performance degradation. Figure 3.3 illustrates a
military network being compromised.

3.4. DVMT 29

The result of the Ultra*Log program in 2001 was an increasing planning
speed by 4x over ALP(section 3.2), better schedules, inventory managers,
and better use of multiple fidelities and sliding time windows, more par-
allelism. The system verified continuous operation under kinetic attack
and simultaneous failure of 40% [28]. The system proved to be robust to
changes, by detecting failures, allocating new resources and restoring func-
tionality from denial of service attacks.

From 2002 the Ultra*Log worked on making the system survivable, since
this was not improved much in 2001.

Figure 3.4: Improved stress result spanning from 2000 to 2003

3.4 DVMT

The Distributed Vehicle Monitoring Testbed(DVMT) was developed at the
University of Massachusetts. The work on DVMT began in 1981 and con-
tinued until 1991. DVMT is one of the oldest and largest distributed AI
testbeds [2] and has resulted in over 50 papers and PhD theses in many
areas.

The DVMT simulates a network of vehicle monitoring nodes (agents). DVMT
operates in an environment, where sound sensors are placed to cover the

30 CHAPTER 3. RELATED WORK

environment. Each node is associated with one or more sensors and is re-
sponsible for analyzing accoustically sensed data to identify, locate and
track patterns in the environment, which is mapped into a 2-dimensional
map.
An example from [13] is shown in figure 3.5, where two agents coorper-
ates and finds the track for a vehicle in the environment. A brief descrip-
tion of the figure is given beneath the figure. At the figure to the left in

Figure 3.5: An example of inconsistent local interpretations

figure 3.5 two rectangels are shown, one for agent A and one for Agent
B. Each rectangle represents the part of the environment that the agents
are observing, and in this case the environment that the agents observe
overlaps. The squares represents a vehicle that has been observed by agent
A , and the circles a vehicle that has been observed by agent B. The grey
density in the squares/circles represent the “quality” of the location mea-
surement of the vehicle; the darker density the better quality. At the left
figure agent A locally beliefs that a vehicle has moved on the track Ta at the
timesteps from 2-11 and agent B locally beliefs that a vehicle has moved
on the track Tb at the timesteps from 1-10. This is though not possible, be-
cause in this case either two vehicles has to be at one location at the same
time or one vehicle has to be at two locations at the same time. So when
the agents exchange knowledge and interact, they will coorperate and by
taking the quality measurements in account, they will have a global inter-
pretation saying, that a vehicle has moved on the track Ta+b shown at the
right figure in figure 3.5.

3.5 ACROSS

The Agent Complex Reasoning Simulation System(ACROSS) is a scenario
where a logistic problem in a non-collaborative environment with self-interested

3.5. ACROSS 31

agents is solved. Agents that are part of the scenario have no common goals
and their cooperation is typically financially motivated [15].

The agents in ACROSS has three types of information, namely:

1. Public Information is available to all agents in the system. It includes
the agent identity, services proposed to other agents and other rele-
vant characteristics it wishes to reveal.

2. Semi-private Information is the information which the agent agrees to
share with selected partners in order to streamline their cooperation.

3. Private Information is available only to agent itself. It contains detailed
information about agent’s plans, intentions and resources.

Figure 3.6: ACROSS scenario. The geography of the island is modelled after
the real Java island in Indonesia, with necessary simplifications.

The environment in the ACROSS scenario is based on a 3D-model of
the Java island from Indonesia as seen in figure 3.6. Three main types of
agents exists in this environment:

1. Location agents represents the villages (see figure 3.7) in the island.
Each location agent can create, transform or consume resources, but
may need extra or other kinds of resources. In this case the location
agent (representing the village), will start a sealed bid auction, where
other location agents can bid4 if they are in posession with the re-
sources needed. When the negotiation is over, the buying location
agent contacts coalitions of transporter agents to carry the cargo.

4The auction setup is done according to the FIPA Contract Net Protocol, see section 5.7.2

32 CHAPTER 3. RELATED WORK

2. Transporter agents have the driver agents (see figure 3.8) as their re-
sources. Whenever a location agent requests a transportation, then
any transporter agent, which doesnt have enough driver agents to
carry the cargo, will try to make a one-time coalition with another
transporter agent. This is because all transporter agents are self-interested
and don’t wish to cooperate with all other transporters. They only
pick the partners that are compatible with their private preferences.
The compatibility is checked using the public information available
about the potential partner and agents’ private preferences.

Transporter agents can make alliances5, to minimize the time to cre-
ate coalitions. By this way the transporters can relatively fast and ef-
ficiently submit their bid before timeout elapses.

3. Driver agents drive the vehicles (see figure 3.8) owned by Trans-
porter agents. They handle path planning, loading, unloading and
other driver duties.

Figure 3.7: An ACROSS location
agent and three transporter agents

Figure 3.8: An ACROSS driver
agent

3.6 Summary

To summarize, this chapter presents work done by others, which have some
relevance to our project.

5Alliances are groups of agents who agree to exchange the semi-private information
about their resources.

3.6. SUMMARY 33

The hospital system uses GPGP to solve a logistic problem at a hospital,
where the essence is to coordinate and increase patient throughput, and
with reference to our project we can use the same approach where we have
to find space for ship blocks in storage locations, instead of finding beds for
patients. The distinction between the hospital scheduling problem and our
transportation scheduling problem is that our transportations have a dead-
line referring to the time a ship block must be picked up at a given location.

The ALP project is highly related to our thesis project, but we do not need
to consider rapid supply in our thesis project, since C-planners(see descrip-
tion in section 2.2.3) in our project already have found suppliers, and are
only interested in a transportation service, hence the end-to-end move-
ment control and execution monitoring are related to our project. The trans-
portaion of ship blocks needs to be coordinated, and the monitoring of the
execution is important in order to give feedback to planners and dynamic
replan the coordination of transports.

The Ultralog project is a related project, which has proven that using multi-
agent systems is useful for developing complex systems that are robust to
changes in chaotic environments. This program tested a system with more
than 1000 agents of medium complexity, solving major military logistic
problems, wherin they were allocating resources, coordinating allocations,
and replanning dynamically. The program showed that multi-agents sys-
tem are highly functional even under network compromising.
The ACROSS scenario is a logistic system implemented with the A-globe
framework6. ACROSS contains three kind of agents to coordinate trans-
ports of resources from villages to other villages in an island. These agents
are related to the following actors at OSS in our case:

• Location agents in ACROSS are related to the C-planners at OSS, be-
cause it is those agents that requests transportations. The difference
is that location agents makes sealed auctions for transportation tasks,
whereas the C-planners requests transportations directly from the D-
planner.

• Driver agents in ACROSS are related to the KAMAG vehicles at OSS,
because it is those agents that handles path planning, loading, un-
loading and other driver duties.

The DVMT monitors vehicles in an environment. It does this by using
sound sensors which are placed all over the environment. By this way the
vehicles can be tracked in the environment, and their current locations can
be found. The DVMT project is related to our project in the sense that it

6see section 5.9.1 for information about A-globe.

34 CHAPTER 3. RELATED WORK

could be used to navigate the KAMAG vehicles around at the OSS domain.
Currently the KAMAG drivers are planning their routes themselves, but
by using the DVMT approach, the vehicles could have been navigated by
the multi-agent system instead.
The related work presented here have similar problems used in other con-
text, which states several methods which could be interesting to use and
we will explore the possibilities of involving some of the methods to solve
the comprehensive logistic problem at the Odense Steel Shipyard Group.

Part II

Analysis

35

Chapter 4

Simulation

Simulation is used to simulate reality, but what is simulation? We will
describe the concept of simulation briefly and further describe ten
different simulation tools. We finalize this chapter by comparing the

ten simulation tools for usefulness in respect to this thesis project.

4.1 What is Simulation?

A simulation is an imitation of some real thing, state of affairs, or process.
The act of simulating something generally entails representing certain key
characteristics or behaviors of a selected physical or abstract system1.

“For Distinction Sake, a Deceiving by Words, is commonly called a
Lye, and a Deceiving by Actions, Gestures, or Behavior, is called Sim-
ulation.”

— Robert South (1643-1716)

A computer simulation is an attempt to model a real-life situation on a com-
puter so that it can be studied to see how the system works. By changing
variables, predictions may be made about the behavior of the system.

Key issues with simulation modeling involves selection of key character-
istics and behaviours and using simplifying approximations and assump-
tions within the simulation and validating the simulation outcome. Sim-
ulations are today used in many contexts, such as human systems to gain
insight into their functioning. The simulation technology is likewise used in
context involving such things like safety engineering, training(e.g. pilots),
testing, performance optimization(e.g. manifactoring system) and educa-
tion. Strong benifits with simulation models is the ability test alternative

1http://en.wikipedia.org/wiki/Simulation

36

4.2. SIMULATOR REQUIREMENTS 37

conditions and courses of actions.

Simulation models are typically categorized into the following three types
[19]:

• Continuous time: is one whose state varies continuously with time;
such systems are usually described by sets of differential equations.

• Discrete time: in a discrete time system, only selected moments in
time are considered, which are usually evenly spaced. Change of states
are only observed at observation points. A continuous time system
can be simulated by choosing a suitable small interval between ob-
servation points.

• Continuous time-Discrete Event: In discrete event simulation, the
operation of a system is represented as a chronological sequence of
events. Each event occurs at an instant in time and marks a change
of state in the system. The operation path is completely determined
by the sequence of event times (which need not be evenly spaced and
can be of arbitrary increments) and by the discrete changes in the
system state which take place at these times (i.e., the interactions of
the events). In between consecutive event times the system state may
vary continuously.

4.2 Simulator requirements

In this section we describe the capabilities that should be included in the
simulation tool used to model the OSS domain.

1. Graphical 2D or 3D: Since we were interested in modeling the Odense
steel shipyard in respect to the internal transportation of ship blocks,
we need a simulation tool that can represent the OSS domain in a
graphical environment(2D or 3D).

2. External access: A strict requirement is external access to the simula-
tion model, due to the fact that we are going to control the simulation
model at runtime from another system.

3. Ability to model reality: The simulation model should be as realis-
tic as possible(ability to model reality), thus the degree of graphical
complexity that the simulation model can provide will have a big in-
fluence on our decision.

4. Well documented API: It is important that the simulation tool has a
well documented API, simplifying programming tasks.

38 CHAPTER 4. SIMULATION

5. Well documented: The simulation tool should be well documented
in general, so that we quickly are able to identify the tool features,
capabilities and limitations.

6. Success: the simulator should have been used succesfully in other
projects before.

7. Statistics: This capability should be provided, so we dont have to run
the simulations at real-time, but are able to speed up the process and
check the results after completion.

8. Category: we will note if the simulation tool, is based on discrete time,
continuous time or continuous-time discrete event.

9. Kinematics: the ability to model kinematics can come in handy if we
are going to simulate the lifting and placing process of a KAMAG
vehicle.

10. Survivability: The simulator should be surviable, meaning that it is
likely that the software provider will be on the marked in the future.

11. OO: The simulator should be object-oriented, allowing flexibility for
the developer when designing the model.

12. Java: It is preferred that the simulator is developed in Java.

13. Stable: The simulation tool should be a stable release, i.e no alpha or
beta versions.

14. Support: It is preferred if the tool provider offers support in case of
problems with the tool.

15. Free: It is preferred if the simulator is free.

to simulate the OSS domain in respect to their transportation problem.
The summary section that succeeds this section collates the ten simulation
tools with respect to the requirements we described in section 4.2.

4.3 Simulation tools

In this section we describe ten different simulation tools, which we have
briefly investigated in order to find a suitable simulation tool. The simula-
tion tool should be used to design a simulation model of the Odense steel
shipyard. We want to visualize the OSS domain graphically, either 2D seen
from bird perspective, or 3D viewable from any angel.

4.3. SIMULATION TOOLS 39

4.3.1 AutoMod

AutoMod is a state of the art software simulation solution, that is truly use-
ful as a decision making tool. It provides a suite of tools, which can be used
to build highly accurate models for analysis, development, as well as con-
trol system emulation2. A screenshot of an automobile simulation model is
shown in figure 4.1

Figure 4.1: AutoMod simulation model of an automobile factory

AutoMod is different from other simulation tools in the sence that there are
no limitations in respect to model size, complexity, or level of detail for op-
erational rules. In AutoMod a template is provided, that assures accurate
modeling of material movement, such as conveyors, lift trucks, operators,
overhead cranes or automoated vehicles.

A true scale 3-D virtual reality animation is provided by AutoMod, which
helps validating the model and communicate the design visually. CAD-like
features are used to define the physical layout of manufactoring, material
handling

The set of material handling systems provided by AutoMod have been de-
veloped with real-world experience in industrial automation.

In order to use AutoMod one must obtain a license, which is not free, but
2http://www.brookssoftware.com/pages/245_automod_overview.cfm

40 CHAPTER 4. SIMULATION

with a runtime license users can test “what-if” scenarios on a pre-built
model.
AutoMod is a discrete-event based simulation tool3.

4.3.2 Dymola

Dymola is a simulation tool based on the OO language Modelica, that con-
tains a standard libary for electrical, rotational and translational mechanics,
thermal components and continuous discrete input/output blocks4. The
Modelica translator is able to perform all necessary symbolic transforma-
tions for large systems (> 100 000 equations) as well as for real time appli-
cations5. A robot from the MultiBody library is shown in figure 4.2.

Figure 4.2: A robot simulated in Dymola

Dymola has unique multi-engineering capabilities meaning that models
can contain components from various engineering domains, allowing the
complete system better to model reality. Moreover a graphical editor with
various libaries is embedded with Dymola. An interface to Simulink is also
provided.

Dymola can handle algebraic loops an reduce degree-of-freedom caused
by constraints, using symbolic manipulation, thus making it robust and

3http://en.wikipedia.org/wiki/Simulation_language
4http://www.dynasim.se/models.htm
5http://www.modelica.org/tools

4.3. SIMULATION TOOLS 41

giving it high performance. Furhtermore special numerical solvers enables
real-time HILS6.

A demo version of Dymola can be downloaded from dynasims website7.

4.3.3 GoldSim

GoldSim is a highly graphical, object oriented, general purpose simulator
for nearly any kind of physical, dynamic, financial or organizational sys-
tem. One can view GolSim as visual spreadsheet, wherein users can vi-
sually create and manipulate data and equations [39]. GoldSim supports
management and decision making in business, engineering and science.

Figure 4.3: Screenshot of GoldSim

Objects constructed in a GoldSim model are referred to as elements, which
represent building blocks of the model. Each object has a grahical image
attached to it, and they accept input data and produces output data.

GoldSim is specially designed to address the uncertainty that is present in
real-world systems, and provides tools for representing uncertainty in pro-
cesses, parameters and future events. Likewise the occurence of discrete

6Hardware-In-the-Loop Simulation
7http://www.dynasim.se/demo/

42 CHAPTER 4. SIMULATION

events into continuous varying systems, and the construction of large, com-
plex models, are supported.
GoldSim is a commercial simulation tool, but is offered free for students,
teachers and professors.

4.3.4 JavaSim

JavaSim is an object-oriented discrete-event based simulator. This simula-
tion tool is based on the Java programming language, and includes statis-
tics.

JavaSim provides a user manual describing its various classes, but this
manual is not considered to be well documented (unsufficient explaina-
tion to the various classes, empty example sections, ect.). This simulation
tool was last tested on JDK 1.0.2 and 1.1.x on Solaris, linux, and Windows
95/NT 4.0 and the documentation have not been updated since 1999, thus
this simulation tool is not considered to be survivable.

We have not found any documentation stating that this simulation tool
have been used succesfully in other projects. We have not been able to find
documentation confirming that this tool can be used to design a graphi-
cal environment like the OSS domain, other than a briefly described draw
function.

4.3.5 Micro Saint

MicroSaint is a object-oriented general purpose simulation tool, based on
discrete-events, that uses a flow chart approach for modeling, and have
been proven useful for both small businesses and fortune 500 companies.
MicroSaint have been used in military projects, health care, manufactoring,
the service industry and in human factors8. A screenshot of Micro Saint is
shown in figure 4.4

The flexibility, power and tools for optimazation makes MicroSaint a use-
ful tool for answering “what-if” questions, and is useful for simulating sys-
tems of any size, shape and complexity.
There three types of views, which are 2D animation, 3D animation or net-
work diagram view.

With Micro Saint we can create 3D models for represented the environment,
and the enhanced viewing capabilities makes it possible to rotate and/or
view 3D objects from any angle. Micro Saint uses Microsofts DirectX tech-
nology. The C# programming language is applied in this simulation tool.

8http://www.maad.com/index.pl/micro_saint

4.3. SIMULATION TOOLS 43

Figure 4.4: Screenshot of Micro Saint

4.3.6 Simcad Pro

Simcad Pro is a a discrete-event based process simulation software for man-
ufacturing, automation, distribution and logistics. It includes a fully dy-
namic environment with optimization and lean and six sigma support9.

It is possible design, validate and implements ideas without disturbing cur-
rent operation. An overall process flow is defined at the beginning, and
then each process cell can be expanded into individual processes of its own.

A graphical user interface is provided, that enables the creating of simu-
lation models without haven to write a line of code, meaning that non-
programmers are able to use this simulation tool.

Models can be verified graphically through animation. Simcad Pro can be
controlled from an external application or can interact with external tools
for data transfer and control.

Simcad Pro is the only graphical tool that enables model modifications dur-
ing the simulation run. Optimization can be performed through the built-in

9http://www.createasoft.com/processImprovementSimulator/
leanProcessSimulationSoftware/SimcadProProcessSimulator7.2.html

44 CHAPTER 4. SIMULATION

optimizer or by dynamically interacting with the model. Changing object
flow and modifying constraints is done while the simulation is running.
Simcad Pro eliminates the need for warm up period required by other tools
and enables real time optimization.

In Simcad pro directional arrows, which contain specialized behaviours,
are used to model part transition, e.g. connectors can behave like conveyers
with photo-eye control. Furthermore processes are capable of implement-
ing change-over time (between products or at specific times) and mean time
between failures and repairs.

Simcad Pro is a 2D and 3D visualization and animation engine, that com-
putes the animation without user intervention. Interfaces are provided to
support CAD files(dwg/dxf) and distances based on the locations of the
different entities are computed automatically. Furthermore the 3D envi-
ronment provides an improved visualization for high end presentations
and dynamically extracts all values to the 3D views, therefore reducing the
amount of work required to build 3 dimensional simulations. A screenshot
of a 3D model is shown in figure 4.5.

Figure 4.5: Screenshot of Simcad Pro

4.3.7 SimCreator

SimCreator is a graphical simulation tool based on real time simulation
and modeling. An intuitive GUI allows users to choose and connect com-

4.3. SIMULATION TOOLS 45

ponents to build models in a power flow modeling approach [44]. A screen-
shot of the Driving Simulator Model is shown in figure 4.6

Figure 4.6: Screenshot of SimCreator

Models developed with SimCreator can be used directly in real time hard-
ware. The code, that SimCreator generates are used in hundreds of simu-
lators and games. Users can create distributed models, without having to
write a single line of C code, by using the GUI. SimCreator is useful for de-
veloping models for simulating dynamic digital controllers and real time
multibody vehicle dynamics.

SimCreator is specialized in generating code to run on embedded systems,
multiprocessor and distributed systems and delivers uncompromised real
time.

SimCreator provides a standard libary of components, including compo-
nent libaries, that allows users quickly to create their own customized com-
poents fulfilling their specific needs. Furthermore components can be grouped
to form other compoents. The mix of C code components and high-level
modeling makes this tool useful for programmers, engineers and end users,
such that they together can develope an interactive model.

46 CHAPTER 4. SIMULATION

4.3.8 Simprocess

SIMPROCESS is a hierarchical integrated process simulation software pack-
age that combines Process Mapping, Flow Charting, Discrete Event Simu-
lation, and ABC10 in a single easy to use tool11. Simprocess is an object-
oriented tool useful for analysis and process modeling by combining the
power of simulation, statistical analysis, ABC and animation. Simprocess
provides non-programmers with a standard set of ready-made blocksfor
building logic-based models, while supporting decisions in customers BPM12,
Process Improvement, Six Sigma and BAM13 initiatives.

SIMPROCESS provides the most costeffective, accurate, and rapid strate-
gic weapon for businesses to evaluate alternatives prior to implementing
them. The ability to visualize how a process would behave, measure its
performance, and try "what ifs" in a computer model makes SIMPROCESS
an invaluable tool for making tough decisions before you commit expen-
sive resources, time, and money.

Simprocess proposes the following four steps for modeling company pro-
cesses:

1. Create model: The creating of a model involves three main tasks:

(a) first map your processes using a flowcharting and process doc-
umentation facility(if creating a flowdiagram),

(b) then drill down inside the hierarchical processes as seen in fig-
ure 4.7, and define subprocesses, activities and workflow(with
no limitation of the number of sublevels). In this stage you also
define objects.

(c) finally resources and their usage are defined. Resources can be
defined as mambers of departments and/or workgroups, and
can be assigned individually to activities or processes, because
they are hierarchical like processes.

2. Simulate the process: Before simulating the model, performance mea-
sures should be selected, i.e. throughput. Simprocess then provides
an animated picture of the flow in the model, providing real-time
graphs of performance measures.

3. Analyze the results: Simprocess generates concise reports of results
containing throughput, wait-time, resource utilization and cost re-
ports. Furthermore it is possible to generate customized reports.

10Activity Based Costing
11http://www.simprocess.com
12Business Process Management
13Business Activity Monitoring

4.3. SIMULATION TOOLS 47

4. Evaluate alternatives: Two unique functions called Alternatives and
Scenario Manager, can be used to evaluate alternative representa-
tions.

Figure 4.7: Creating models with Simprocess

It is possible to download a trial version from the Simprocess download
website14, and one can within 15min begin to evaluate this simulation tool.

4.3.9 Simul8

SIMUL8 is commercial discrete event simulator designed to adress various
business problems, including supply chain management, design of manu-
factoring systems and capacity planning issues15. SIMUL8 is a useful tool
for analyzing flow, quering and general resource requirements, thus it gen-
erally used prior to the actual layout of a facility16.

Brooks Software which is provider of both AutoMod and SIMUL8 have
formed an alliance in the simulation industry, due to the fact that SIMUL8
and AutoMod(described in section 4.3.1) are very complementary simula-
tion products. Where AutoMod excels in realistic and highly detailed mod-
eling, SIMUL8 excels in cenceptual modeling, i.e. flow charting and BPR17.

AutoMod is applied in the more detailed analysis stage once an initial lay-
out of the facility is available and the specifics of material movement are
determined

14http://www.caciasl.com/downloads/downloads.cfm
15http://www.simul8.com/products/features/
16http://www.brookssoftware.com/pages/248_simul8.cfm?searchterm=simul8
17Business Process Reengineering

48 CHAPTER 4. SIMULATION

Figure 4.8: Screenshot of a Simul8 model

SIMUL8 provides a grahical environment usable for non-programmers like
AutoMod, as well as graphical animations, statistics and interfaces to com-
men external programs, such as Excel and Visio.

Simul8 must be considered to be a highly succesful simulation tools, with
references like Jaguar, Nike, IBM, Chrysler an many other companies, which
have used simulation model developed with Simul8.

4.3.10 Renque

Renque is a simulation tool designed for general purpose discrete event
simulations. The high abstraction level of the concept of discrete event
simulation renders its application potential extremely wide-ranging. Some
common application areas of discrete event simulation are service stations
such as airports, call centers and supermarkets; road and rail traffic; indus-
trial production lines and logistical operations such as warehousing and
distribution [14].

Renque provides two types of elements, passive and active elements, whose
parameters can be changed. Renque is closely connected to Microsoft Ex-
cel, from where the user can import data in the model.

Active and passive server classes constitues the core of the Renque simu-
lation engine. The active servers collect entities upstream through one or

4.4. SUMMARY 49

more connection links, while passive servers do not collect entities and do
not dispatch them either, i.e. the passive components are used for tempo-
rary storage, while the active components contain logic for collecting and
dispatching. Passive servers simply stores entities, and waits until a down-
stream active server collects them. When an active server collects an en-
tity(upstream), it stores it for some delay time and then dispatches it at the
downstream side; this process is repeated in cycles.

Figure 4.9 shows an example of a model simulation a shopping centre. The
first active component simulates customer entry in the mall, the second ac-
tive component simulates a customer shopping, the third component is a
passive component simulating the customer stading in a queue waiting to
pay for their shopping, and the last component is an active component sim-
ulating the paydesk.

Figure 4.9: Renque simulation model of a shopping centre

The flow in the simulation model is influenced by capacity, rules and other
various parameters for the active and passive servers. Passive rules include
FIFO18, LIFO19 and random. The active rules for collect and dispatch in-
clude random, probability and order.

It is posible to download a 60 day trial version from their website20, which
gives the possibility of evaluating the simulation tool before purchasing it.

4.4 Summary

In this chapter we discussed ten simulation tools, which have all briefly
been researched for usefulness in this thesis. They are all different, and can
be used to design different types of simulation models with different de-
gree of complexity an abstraction level.

18First In First Out
19Last In First Out
20http://www.renque.com/

50 CHAPTER 4. SIMULATION

The ten frameworks have been collated and compared in table 4.1 and
many of our requests are generally supported by most of the simulation
tools.

We have choosen to use the AutoMod simulation tool to design our sim-
ulation model of the OSS domain. This tool is based on continuous time
discrete-event, and we are interested in an event based system. The tool
is also well documented, has some object oriented capabilities, in respect
to modeling entities in a model, and the tool is surviveable, i.e. likely to
be on the marked for many years to come. AutoMod is described as one
of the best simulation tools for designing detailed environments, and it is
commonly used in the industry to model production line environments.
All theese capabilities makes AutoMod a suitable candidate to use in this
thesis project.

The AutoMod simulation has the best system to design a detailed path
movement system, and also has the ability to model kinematics, which we
may use in order to model the kinematics of the KAMAG vehicles at OSS.
The AutoMod simulation tool is commerciel, but SimCon, which is one of
the leading corparations on the danish marked, that supplies emulation so-
lutions, are also part of the DECIDE project, and MIP21 has therefore been
able to provide us with a license key during this thesis.

21The Maersk Mc-Kinney Moeller Institute for Production technology
4 = supported feature, (4) = partly supported feature
8 = unsupported feature, (8) = probably unsopperted feature / Unknown

4.4. SUMMARY 51

Feature / Simulator A
ut

oM
od

D
ym

ol
a

G
ol

dS
im

Ja
va

Si
m

M
ic

ro
Sa

in
t

Si
m

ca
d

Pr
o

Si
m

C
re

at
or

Si
m

pr
oc

es
s

Si
m

ul
8

R
en

qu
e

Graphical 2D or 3D 4 (4) (4) 8 (4) 4 (4) 4 (4) 8

External access 4 4 4 4 4 4 (8) 4 4 (8)
Ability to model
reality

4 4 4 8 4 (4) (8) 4 4 8

Well documented
API

4 (4) 4 4 (4) 4 (8) 4 4 8

Well documented 4 (4) 4 8 (4) 4 4 4 4 4

Success 4 4 4 8 (4) 4 4 4 4 8

statistics 4 (4) 4 4 4 4 4 4 4 4

Discrete time 8 (4) 8 8 8 8 8 8 8 8

Continuous time 8 (4) 8 8 8 8 8 4 8 8

CTDE 4 (4) 4 4 4 4 8 4 4 4

kinematics 4 4 (8) (8) (4) 4 (8) 8 (8) 8

Surviveability 4 4 4 8 4 4 4 4 4 (8)
OO (4) 4 4 4 4 (4) 8 4 (4) 8

JAVA 8 8 8 4 8 8 8 4 8 8

Staeble 4 4 4 4 4 4 4 4 4 4

Support 4 (4) 4 (8) 4 4 4 4 4 4

Free (4) (4) (4) 4 8 8 8 (4) 8 (4)

Table 4.1: Comparing simulator features

Chapter 5

Multi-Agent System

Every MAS paradigm is based on agents, which communicates in or-
der to reach their individual goals and/or global goals [32]. Agents
have perception, which determines how they perceive the environ-

ment they are part of, and holds mechanisms, that gives them the ability
to act according to certain situations. The agents ability to make decisions
have been influenced from AI. Systemic, which focuses on the flow of in-
formation between components, have influenced the terms of interaction
and communication between agents.

5.1 What is an Agent?

There exist much debate and controversy on the subject of a universal defi-
nition of an agent, but there exist no standard definition at the present time.
It is important with a definition in order not to loose focus of ones objective,
thus we have adapted the folowing definition from [52].

An agent is a computer that is situated in some environment, and that
is capable of autonomous action in this environment in order to meet
its design objectives.

Autonomous agents are capable of making independent decisions, by tak-
ing actions in order to satisfy internal goals, which is partly based on their
perceived environment1.

If we take a look at figure 5.1, which illustrates an agent in its environment,
it is seen that the agent perceives the environment and reacts by perform-
ing actions that will effect the environment. In most cases the agent will

1http://en.wikipedia.org/wiki/Software_agent

52

5.1. WHAT IS AN AGENT? 53

not have complete control over its environment, meaning that it at best will
have a partial control in the sence that it can influence the environment.

From the agents point of view it can perform the same action twice, which
could result in different outcomes(non-determinism) depending on the cur-
rent situation, thus the agent should be prepared that its action might not
have the effect it desires.

Most likely an agent will have a set of different actions it can perform,
which represents the agents capability. The key problem for the agent is
to decide which actions to perform in order satisfy its design objectives.

Figure 5.1: An agent in its environment. The agent takes sensory input from
the environment and produces as output actions that effect it.

We will give two examples of agents, a physical agent and a virtual agent.

Example: Thermostat

A simpel control system like a thermostat could be viewed as
an agent. It perceives its environment with sensors, which indi-
cates whether the temperature is too cold or ok, and produces
two signals(actions) “heat on” or “heat off” correspondingly.
Like we mentioned earlier, the same action might have differ-
ent outcomes depending on the given situation, if for instance
someone left the door open, the action of turning the heat on
might not have the desired effect on the environment.

Example: xbiff

Xbiff is a X Windows2 program which monitors the users in-
coming mails, and notifies the user when a new mail arrives.

2GUI for Unix and Unix like operating systems

54 CHAPTER 5. MULTI-AGENT SYSTEM

Xbiff can be viewed as a software agent, which performs actions
to indicate whether or not there are unread messages. While our
thermostat example inhabited a physical environment, the Xb-
iff program inhabites a virtual environment, which it perceives
by calling software function and performs its output actions by
changing an icon for the user.

We will now describe four capabilities in which agents are frequently cathe-
gorized, which concern reactivity, proactiveness, social ability and cogni-
tive ability [52, 32].

5.1.1 Reactive Agents

Reactive agents have the ability to perceive their environment, detect changes
and to respond to those changes in form of actions, and thereby effecting
their environment as seen in figure 5.2. This type of agent has the ability
to respond quickly or within reasonable time to changes in the environ-
ment, and chooses its next actions, from a predefined set of actions in its
knowledge base [52, 32].

Figure 5.2: A reactive agent perceives its environment, and reacts with ac-
tions, that effects the environment.

5.1.2 Proactive Agents

Proactive agents are able to take the initiative in order to satisfy their design
objectives, and thereby exhibit goal-directed behaviour [52]. The proactive
agent is goal directed, and keeps an internal state (see figure 5.3), which
contains its goals and set of actions, and it must be able to reason about
which actions it can use in order to reach its goal. If the agent is purely

5.1. WHAT IS AN AGENT? 55

proactive, then it will not react to changes in the environment until it has
reached its goal, which works fine in a functional system, which do not
change under execution. In complex and real world systems , the environ-
ment is likely to undergo changes before goals are reached, thus it will
not be acceptable for an agent to be purely proactive and not respond to
changes in the environment before their goals are reached.

Figure 5.3: A proactive agent perceives its environment, and acts according
to its goal-directed behaviour.

Below is an example of reactive vs. proactive behaviour among children 3

“A REACTIVE child responds to anger by throwing what most
people would refer to as a tantrum. Arms may flail, feet may
stomp, and tears may flow. Screaming and crying are usually a
given. Actions are impulsive and emotions typically run high.
A reactive pre-teen can seemingly transform into a toddler in
less time than it takes to roll your eyes.”

“A PROACTIVE child responds in a subtle, less noticeable man-
ner. His mind begins to plot revenge against the person who
has dared to "cross" him. He is calm and collected on the out-
side, but manipulative and deliberate on the inside. A proactive
child is quite skilled at hiding his angry feelings behind an im-
passive expression.”

3http://www.parentcoachplan.com/article2.php

56 CHAPTER 5. MULTI-AGENT SYSTEM

5.1.3 Social Agents

Social agents are capable of interacting with other agents in order to sat-
isfy their design objectives [52]. Some tasks require collaboration between
agents to reach a goal. Consider two types of agents with a common ob-
jective - to collect ore on mars; one agent with explorer capabilities and
one with collector and transportation capabilities. In order for the explorer
agent and the transportation agent to reach their common objective, they
will have to interact; the explorer searches the planet for ore and reports
to transportation agents, which then collects the ore and transports it back
to a base, such agents are characterized as social agents. Figure 5.4 shows
two agents, which has the ability to perceive each other, and thereby to be
social.

Figure 5.4: Social agents, which has the ability to interact.

5.1.4 Cognitive Agents

Cognitive agents has the ability to reason. The agent often requires an ex-
plicit representation of itself and the agents with which it interacts, which
it stores in its knowledge base, and it uses this information to act [32]. The
difference is that a cognitive agent has the ability to learn from its experi-
ence and the experience of others, and can act even in situations, which are
not contained in its knowledge base. A cognitive agent also has the ability
to reason about the outcome resulting from its actions in the environment,
thus giving it planning capabilities.

5.2. THE AGENT ENVIRONMENT 57

5.2 The Agent Environment

The environment from the partiel subjective view of an agent is considered
to be everything else than the agent itself, which the agent can perceive. In
almost any realistic environment uncertanty will inherently be present [52].

An environment, in which the agent can obtain complete, accurate and up-
to-date information, is referred to as accessible. Real-world environments
are not accessible in that sence, thus also referred to as inaccesible.

If every action in an environment has a garanteed effect, meaning that there
are no uncertanties regarding the resulting state, then we could call the en-
vironment deterministic, but in the real world environments are typically
non-deterministic or considered to be.

An environment that can be assumed to remain unchanged, except when
influenced of the agents actions, is considered a static environment. The
real world and comprehensive problem domains are dynamic environments.
When an agent in a dynamic environment performs no external action to
effect the environment between time t0 and t1, then the agent can not as-
sume that the environment at t1 is the same as it was in t0. In a static envi-
ronment the agent only needs to perform information gathering once, from
where it can accurately predict the effects of its actions on the environment,
assuming that it understands its environment correctly and the effect of its
actions.

If an environment has a finite number of actions and perceptions in it, it is
considered to be discrete, else the environment is continuous.

To summarize we can categorize the environment into the following:

1. accessible vs. inaccesible

2. deterministic vs. non-deterministic

3. static vs. dynamic

4. discrete vs. continuous

5.3 What is a Multi-Agent System?

Systems that contain multiple agents are referred to as multi-agent systems
a.k.a multiple agent systems 4. Where we earliere talked about an agent in

4http://en.wikipedia.org/wiki/Software_agent

58 CHAPTER 5. MULTI-AGENT SYSTEM

its environment, when introducing multiple agents, we will have to con-
sider organizing the agents, and determine how the agents should interact.

In an organized multi-agent system, the agents characteristically have dif-
ferent capabilities and will not have global access to data in the environ-
ment, so in order to solve a common objective, they must interact. In a
multi-agent system, data is generally decentralized and execution is asyn-
chronous, there may be little or no global control, which is why such sys-
tems are sometimes referred to as swarm systems [52, 32].

To advance individual goals and the overall system in which agents reside,
agents can communicate, coordinate and negotiate among each other.

In the following sections we will describe the widely used AEIO paradigm
and BDI agent architecture.

5.4 The AEIO paradigm

A multi-agent system can be decomposed into four main entities: Agent,
Environment, Interaction and Organization, which is referred to as the AEIO
paradigm [32], which contains the following three statements, from which
we will describe the declarative principle.

The Declarative Principle
MAS = A + E + I + O

The Functional Principle
Function(MAS) =

∑
Function(entities) + Emergence Function

The Recursive Principle
Entity = basic entity I MAS

The declarative principle is composed of the following four components:

1. Agent: The agent is the basic component in a multi-agent system,
which we described in section 5.1.

2. Environment: The environment, which was described in section 5.2,
is where agents evolve, and can be either virtually or physically mod-
eled according to whether one chooses software or hardware agents.

5.5. BDI AGENT ARCHITECTURE 59

3. Interaction: Interaction among the agents, can vary from simple ones
like forces exerted between agents, to very complex ones like speech
acts or interaction protocols. The most used interaction protocols in
present MAS frameworks are described in section 5.7.

4. Organization: The organization of agents is the last component, which
is often identified as the entire multi-agent system or the society of
agents, but may also be exhibited as an independent feature of a MAS.
Organization is described in section 5.6.

5.5 BDI Agent Architecture

One of the major cognitive agent class of architectures is the belief-desire-
intention (BDI) agent architecture [18]. A representative BDI architecture is
shown in figure 5.5.

Figure 5.5: MAS BDI architecture

As it is seen from figure 5.5, the BDI architecture contains four key data
structures[51], namely.

• Beliefs: Is the information that the agent has about the environment,
which may be incomplete or incorrect. This information can be repre-
sented by variables or more generally symbolically.

• Desires: Is the set of tasks that the agent is able to achieve.

• Intentions: Is a subset of the desires, which the agent has committed
to achieve. The agent will try to achieve an intention until it believes
that the intention is satisfied or until the intention is no longer achiev-
able.

60 CHAPTER 5. MULTI-AGENT SYSTEM

• Plans: Is the plan library for the BDI agent. The plan library specifies
the courses of actions that may be followed by an agent in order to
achieve its intentions.

The interpreter shown in figure 5.5 has the following responsibility:

1. Update the agents beliefs, according to new perceptions of the envi-
ronment.

2. Generate new desires on the basis of new beliefs.

3. Select a subset of the tasks from the desires and let these tasks become
the intentions of the agent.

4. Select a course of action, based on the intentions and plan library.

Rao and Georgeff has defined an abstract interpreter for the BDI architecture[43].
This interpreter is shown below

BDI-interpreter

1 initialize-state();
2 repeat
3 options := option-generator(event-queue);
4 selected-options := deliberate(options);
5 update-intentions(selected-options);
6 execute();
7 get-new-external-events();
8 drop-succesful-attitudes();
9 drop-impossible-attitudes();

10 end repeat

We will now give a brief description of this interpreter. Line 1 initializes
the state of the agent, that is the information, motivational and delibera-
tive states of the agent (These states represents the mental attitudes of Belief,
Desire and Intention respectively[43]). Then an execution cycle is entered
wherein at line 3 the desires of the agent are calculated (The event-queue
contains the perceptions of the environment). Line 4 and 5 updates the in-
tentions with a subset from the desires. Line 6 executes any intention if it
is possible according to the plan library. Line 7 adds perceptions, that have
occured during the interpreter cycle, into the event-queue. In line 8 and 9
the structures of desires and intentions are modified, such that all succesful
desires and satisfied intentions are dropped, as well as impossible desires
and unrealisable intentions. The execution cycle is then repeated.

5.6. ORGANIZATION OF AGENTS 61

5.6 Organization of Agents

The collection of all agents in a multi-agent system, is referred to as a so-
ciety of agents. When designing a multi-agent system, one must consider
how to structure the society of agents, which is known as organizing the
agents [32]. The term organization refers to placing agents that has a certain
unity into groups. Groups, that can be represented explicitly, are furhter-
more referred to as organizations.

The following description of three types of hierarchical architectures have
been adapted from [32]:

1. Simple hierarchy: The simple hierarchy consists of only two levels
in a tree, where the top level, is the controlling part of the hierarchy,
that makes the decisions, and the bottom level nodes each solve a
subproblem of the overall problem. This hierarchy can be viewed as
having a master-slave relationship between the two levels.

2. Multi-level hierarchy: A multi-level hierarchy consists of multiple
complementary levels, and thereby allowing control to appear at var-
ious levels. Nodes within the same level have the ability to interact,
and thereby coordinate their effort through negotiation. The overall
diffence from the simple hierarchy is that no node has complete con-
trol of its sublevel, since all nodes within a level can communicate.

3. Decentralized hierarchy: The decentralized hierarchy is a multi-level
hierarchy with the difference, that there are no interaction between
nodes in a level, and every node can be an organization itself. The
advantage of this hierarchy is that the control is distributed, and each
level chooses its own organization, thereby giving it more control ca-
pabilities, making decisions decentralized. The higher the level, the
more power regarding long term operations, thus the top level has
the overall decision power regarding the long term operations in the
entire society.

5.7 Agent Interaction

Interaction is one of the components in the AEIO paradigm. It is a key fea-
ture in MAS, because agents needs to interact to solve large and complex
problems. Figure 5.6 combined from [52, 34] shows how agents can be or-
ganized in a MAS and their structure for interaction.

62 CHAPTER 5. MULTI-AGENT SYSTEM

Figure 5.6:

Interaction in a Multi-Agent System has the following meaning5:

Interaction is a kind of action that occurs as two or more objects have
an effect upon one another.

Interaction ranges from simple forces between agents to complex ones like
speech acts or interaction protocols[32]. Another interaction kind is the
blackboard interaction model, which for example is used by the Cougaar
agent framework(see section 12 for further information about Cougaar).

Speech act theory is the foundation for agent Interaction Languages. A
speech act contains three acts[18]:

• Locutionary Act: uttering words and sentences with meaning

• Illocutionary Act: type of action, intent of the utterance

5http://en.wikipedia.org/wiki/Interaction

5.7. AGENT INTERACTION 63

• Perlocutionary Act: expected (desired) result of the utterance

Example of a speech act from [8]:

When a person utteres “Shut the door!” to another person, we
have the following three acts:

The Locutionary act is the physical utterance with context and
reference, i.e. who is the speaker and the hearer, which door, etc.

The Illocutionary act is the intention of the utterance, i.e. the speaker
wants the hearer to close the door.

The Perlocutionary act occurs as a result of the illocution, i.e. the
hearer closes the door.

Interaction Languages6 is used by agents to communicate. The most known
and widely used ones are KQML and FIPA-ACL. We will now describe
these two ACL’s.

5.7.1 KQML

KQML is an agent communication language initially defined by “The DARPA
Knowledge Sharing Initiative External Interfaces Working Group” and is de-
scribed in [21]. The group was formed in 1990 to develop protocols that
could be used by autonomous information systems to share knowledge.
In 1997 Yannis Labrou and Tim Finin proposed a new specification for the
KQML [36], where there are significant changes to reserved performatives,
their meaning and their use. Some of the KQML reserved performatives
and their description can be seen in table 5.1.

A KQML message is composed of three parts:

1. Performative 2. Parameter 3. Parameter Value

An example of an “ask-if” KQML message and the three parts can be seen
in figure 5.7. In this example the D-Planner Agent asks the Kamag4843
Agent whether it’s state is free.
When following reserved parameters (shown in table 5.2) are used in a
KQML message, then they have to conform with the meanings in this table.

6Also called Agent Communication Languages (ACL’s)

64 CHAPTER 5. MULTI-AGENT SYSTEM

Name Meaning
ask-if S wants to know if the :content is in R’s VKB
ask-all S wants all of R’s instantiations of the :content that are true of R
ask-one S wants one of R’s instantiations of the :content that is true of R
tell the sentence is in S’s VKB
untell the sentence is not in S’s VKB
deny the negation of the sentence is in S’s VKB
insert S asks R to add the :content to its VKB
uninsert S wants R to reverse the act of a previous insert

Table 5.1: Some KQML reserved performatives

Parameter Meaning
:sender the actual sender of the performative
:receiver the actual receiver of the performative
:from the origin of the performative in :content when forward is used
:to the final destination of the performative in :content when

forward is used
:in-reply-to the expected label in a response to a previous message (same as

the :reply-with value of the previous message)
:reply-with the expected label in a response to the current message
:language the name of the representation language of the :content
:ontology the name of the ontology (e.g., set of term definitions) assumed

in the :content parameter
:content the information about which the performative expresses an

attitude

Table 5.2: KQML reserved parameters

5.7. AGENT INTERACTION 65

Figure 5.7: A KQML message

Name Meaning
Accept Proposal The action of accepting a previously submitted proposal

to perform an action.
Call for Proposal The action of calling for proposals to perform a given

action.
Failure The action of telling another agent that an action was

attempted but the attempt failed.
Inform The sender informs the receiver that a given proposition

is true.
Propose The action of submitting a proposal to perform a certain

action, given certain preconditions.

Table 5.3: Some FIPA-ACL performatives

5.7.2 FIPA-ACL

The Foundation for Intelligent Physical Agents (FIPA) was formed in 1996
to produce software standards for heterogeneous and interacting agents
and agent-based systems [1].

The FIPA-ACL is similar to KQML and it also defines performatives7. A
performative in FIPA is called a communicative act. Some of these perfor-
matives and their meaning can be seen in table 5.3.

An example of a FIPA-ACL message can be seen in figure 5.8 [52]. An ad-
vantage of the FIPA-ACL is that every communicative act are described by

7The defined performatives are listed in the FIPA Communicative Act Library Specifica-
tion [22]

66 CHAPTER 5. MULTI-AGENT SYSTEM

Figure 5.8: A FIPA-ACL message

a Semantic Language (SL). SL is a quantified, multimodal logic with modal
operators for beliefs (B), desires (D), uncertain beliefs (U), and intentions
(persistent goals, PG) [35]. The communicative act inform has the following
SL:

〈i, inform(j, ϕ)〉
FP : Biϕ ∧ ¬Bi(Bifjϕ ∨ Uifjϕ)
RE : Biϕ

The first part “〈i, inform(j, ϕ)〉” says that agent i informs agent j of content
ϕ.

The second part “FP : Biϕ ∧ ¬Bi(Bifjϕ ∨ Uifjϕ)”, defines the Feasibility
Precondition (FP), which is the necessary condition which has to be fulfilled
before agent i can use the communicative act inform. This FP says that be-
fore agent i can inform agent j of content ϕ, agent i has to Believe ϕ and
Not Believe that agent j Believes anything about ϕ or are Uncertain about
ϕ. That is agent i believes ϕ and believes that agent j doesnt know anything
about ϕ.

The last part “RE : Biϕ”, defines the Rational Effect (RE), which is the ef-
fect, agent i expects, that will occur when it uses communicative act inform.
It says that the result of the communicative act will be to make agent j Be-
lieve ϕ. But it is a rational effect, that is even if agent i believes that the
outcome of the communicative act will be to make agent j believe ϕ, then
there is no guarantee that it will happen; it is only what agent i believes will
happen.

Another advantage that FIPA-ACL has is that there have been specified
specific Interaction Protocols (IP) for different purposes. These IP’s can be

5.7. AGENT INTERACTION 67

Interaction Protocol
Request Interaction Protocol
Query Interaction Protocol
Request When Interaction Protocol
Contract Net Interaction Protocol
Iterated Contract Net Interaction Protocol
English Auction Interaction Protocol
Dutch Auction Interaction Protocol
Brokering Interaction Protocol
Recruiting Interaction Protocol
Subscribe Interaction Protocol
Propose Interaction Protocol

Table 5.4: FIPA Interaction Protocols

seen in table 5.4.

Among the protocols in table 5.4 the Contract Net Interaction Protocol spec-
ifies the interaction between agents for fully automated competitive nego-
tiation through the use of contracts [7]. Figure 5.9 shows the UML diagram
for this interaction protocol. This protocol is used whenever one agent(the
Initiator) takes the role as a manager, wanting one or more agents(Participants)
to perform a certain task. For a given task, any number of the Participants
may respond, where some gives a proposal and some refuses; negotiations
then continue with the Participants that proposed [23].

Agents can also interact via blackboards instead of communication with
ACL’s. In the next subsection we describe the publish-subscribe model which
is used by the Cougaar agent framework.

5.7.3 Publish-Subscribe model

In a publish-subscribe model a sender will publish a message, without
specifying a receiver. A subscriber subscribes to a specific kind of a mes-
sage, and whenever someone publishes that kind of a message, the sub-
scriber will be notified and receives the message. There exists two cate-
gories of publishing/subscribing as follows8:

• Broker: There exists a broker agent, which manages all subscriptions.
Whenever an agent publishes a message, the broker checks the sub-
scriptions and forwards the message to the agents which made a sub-
cription for that kind of a message.

8http://en.wikipedia.org/wiki/Publish/subscribe

68 CHAPTER 5. MULTI-AGENT SYSTEM

Figure 5.9: FIPA Contract Net Interaction Protocol

• Non-broker: Every agent manages individually the subscriptions from
other agents, and when the agent publishes a message, all subscribed
agents will receive it automatically.

The Cougaar framework is a non-broker publish-subscribe model. Each
agent in Cougaar has a local blackboard, where it can publish objects and
other agents can subscribe to those objects. The subscribing agents will then
be notified whenever an object in the blackboard is created, modified or
removed (see appendix E for a description of the Cougaar framework).

5.8 Framework requirements

The problem with MAS is that there are no official standard of how to de-
sign such a system, thus various multi-agent frameworks have been devel-
oped for specialized problem domains in the past decade.

In the research of the most suitable MAS frameworks, we have gone through
128 MAS frameworks9. Prior to the investigation, we felt the need to com-
pose an overall list of requirements to a suitable framework in order to

9http://eprints.agentlink.org/view/type/software.html

5.9. SUITABLE FRAMEWORKS 69

narrow down the search.

We have decided that the MAS framework we will work with, should have
the following features:

1. Surviveability

2. Java Toolkit

3. Planning module

4. GPGP

5. Agent communication language ACL(FIPA/KQML)

6. Open source

7. Succes - has it been used in other projects before

8. Well documented API

9. Well documented

10. BDI

5.9 Suitable Frameworks

In this section we present the ten most suitable MAS frameworks in respect
to our thesis project based on our framework requirements(see section 5.8).
The following ten frameworks presented in this section are all candidates
for being used in our thesis project. In the elimation process we weighted
that the frameworks should not be too similar. We end this chapter by a
summary that lists the framework features, which are based on our require-
ments.

5.9.1 A-globe

A-globe is a fast and lightweight platform with agent mobility support and
communication inaccessibility [48]. The system architecture for A-globe can
be seen in figure 5.10.

An A-globe platform10 runs in its own JVM instance and consists of one or
more Agent Containers.

Agents live in those containers and are able to communicate (XML or bi-
nary) and migrate to other containers. If an agent uses a library not defined

10Its possible to run a maximum of 1000 platforms on a single machine

70 CHAPTER 5. MULTI-AGENT SYSTEM

in the platform to which it is migrating to, then the library manager moves
this library to the new platform.

The extended version includes Geographical Information System (GIS), which
maintains information about agent visibility. The Environment Simulator
(ES) agent sets this visibility, and two agents can communicate, only if they
are visible to each other.

Figure 5.10: A-globe system architecture

5.9.2 AgentBuilder

The commercial framework AgentBuilder is an integrated tool for con-
structing intelligent software agents11. Agent Builder is an extension of
the Shoham’s AGENT-0 and Thomas’s PLAnning Communicating Agents
(PLACA), both are agent programming languages [46, 33]. The agents have
Mental Models which consist of Beliefs, Commitments, Intentions and Ca-
pabilities. The agent architecture in AgentBuilder can be seen in figure 5.11.

The AgentBuilder consists of a Toolkit and a Runtime-system. The toolkit
helps the agent developer to analyze and design the multi-agent system.
It offers the developer a couple of tools so that constructing a multi-agent
system can be done fairly quickly, e.g. the Agent Manager tool is used to
define the agents initial- beliefs, commitments, intentions etc. Another tool
is the Agency Manager, which is used to form groups of agents which can

11http://www.agentbuilder.com/Documentation/product.html

5.9. SUITABLE FRAMEWORKS 71

communicate and cooperate to solve some tasks.

The Runtime-system runs in a JVM and consists of an Agent Engine, where
agents are executed. The problem-specific code that each agent requires for
its operation can be written in Java, C or C++. This code are placed in enti-
ties which is called Project Accessory Classes (PACs).

Figure 5.11: AgentBuilder agent architecture

5.9.3 Cougaar

The Cognitive Agent Architecture (Cougaar) is an open source project, re-
sulted from two consecutive DARPA research projects spanning over mul-
tiple years12. Cougaar is a Java-based architecture designed for construct-

12http://eprints.agentlink.org/5343/

72 CHAPTER 5. MULTI-AGENT SYSTEM

ing large-scale distributed Multi-Agent Systems. Along with the architec-
ture Cougaar provides demonstration, visualization and management com-
ponents, which will simplify the development of complex distributed ap-
plications13, and all the source code can be downloaded from the Cougaar’s
open source project site www.cougaar.org.

Cougaar has shown to be very efficient and has demonstrated that us-
ing advanced agent-based technology it is feasible to conduct rapid, large
scale distributed logistics planning and replanning. The Cougaar project
has also been focused on survivability of the distributed agents-based sys-
tems, specifically for systems operating in extremely chaotic environments
[20], meaning more reliable and dynamic systems, which are more robust
for changes in the physically environment.

Since the end of 2004 Cougaar has not been DARPA-sponsored, but peri-
odic stable releases of the Core Architecture are still provided by the com-
munity14.

Figure 5.12: Cougaar Architecture

5.9.4 DECAF

DECAF15 is a toolkit for developing Multi-Agent Systems. DECAF is a
kind of a BDI-model [27]. An agent in this framework has some capabil-
ities which are called “desires” in BDI. The interesting thing is that the BDI

13http://en.wikipedia.org/wiki/Cougaar
14http://cougaar.cougaar.org/software/latest/doc/roadmap.html
15Distributed, Environment-Centered Agent Framework

5.9. SUITABLE FRAMEWORKS 73

“intentions” in this framework are partitioned into 3 levels namely “plan-
ning”, “scheduling” and “executing”. The architecture for an agent in DE-
CAF can be seen in figure 5.13.

The toolkit runs in a JVM, and has additional tools to help the developer
implementing a Multi-Agent System. One of the tools is the PlanEditor,
which is a graphical interface [42]. A developer can easily with the PlanEd-
itor, define what agents are able to do, that means which actions that they
are able to take.

As seen from figure 5.13 every agent uses a plan-file. The plans and their
execution structure in DECAF is an extension of RETSINA and TAEMS, but
the complexity is less than TAEMS [25].

There is also a GPGP module in DECAF. The basic idea with GPGP is that
each agent constructs its local view of the structure and relationships of its
intended tasks [26].

Figure 5.13: Decaf architecture. Agents communicate with KQML mes-
sages.

5.9.5 JACK

JACK is a Java-based Multi-Agent framework. It has a lightweight imple-
mentation of the BDI architecture and supports extension by other agent
models. The two systems, Procedural Reasoning System (PRS) and dMARS,

74 CHAPTER 5. MULTI-AGENT SYSTEM

are both predecessors to JACK, and both implemented the BDI model [40].

JACK is not bound to a specific agent communication language such as
KQML or FIPA ACL, but has the capability to use them if needed. It pro-
vides a native lightweight communications infrastructure for situations where
high performance is required.

JACK supports creation of teams and roles for agents by the means of an
extension called SimpleTeam. Agents in JACK are social agents, that is both
proactive(goal directed) and reactive(event driven) [41].

The JACK framework consists of several components, which are listed be-
neath [40]:

• JACK runtime environment16: Agents are executed here. Communi-
cation and concurrency issues with a simple agent naming service are
also handled here.

• JACK compiler: Compiles JACK Agent Language into Java code.

• BDI Component: Adds support for BDI reasoning.

• SimpleTeam Component: Adds support for team-based reasoning.

• Agent Development Environment: is a GUI for viewing and manip-
ulating JACK applications.

• Agent Debugging Environment: is for viewing messaging between
agents and for displaying internal execution states in the kernel.

• JACOB: is a toolkit supporting conversion of messages and objects
into human readable textual format, fast binary format or XML.

JACK is built by the company “Agent Oriented Software” (AOS), and is not
freeware.

5.9.6 JADE

JADE17 is a Multi-Agent Framework developed by TILAB [10]. JADE is
used to develop distributed multi-agent applications. JADE includes fol-
lowing [47]:

• A runtime environment where agents can live and execute.

• A library of classes(Java) to develop agents.

16Also called the JACK agent kernel
17Java Agent DEvelopment Framework

5.9. SUITABLE FRAMEWORKS 75

• Graphical tools that allows administrating and monitoring the activ-
ity of running agents.

A runtime environment contains one “Container” where the agents reside.
A standalone Container or several linked Containers are called a “Plat-
form”, se figure 5.14. Containers can be main- or “slave” containers, the
“slave” Containers have to register with the main Container [47].

Figure 5.14: JADE Containers and Platforms

As seen from the figure each Main Container contains an AMS18 and a DF19

agent. The AMS ensures that each agent in the platform has a unique name
and can create/kill agents in the platform if requested. The DF provides
a Yellow Pages service by means of which an agent can find other agents
providing the services he requires in order to achieve his goals.

18Agent Management System
19Directory Facilitator

76 CHAPTER 5. MULTI-AGENT SYSTEM

JADE is compliant with the FIPA specifications, and JADE agents can there-
fore interoperate with other agents, provided they also comply to the FIPA
specifications.

JADE does not deal with the internal of agents20, that is JADE agents are
not intelligent agents. JADE only deals with aspects external to the agent,
such as message transport, agent lookup, agent life-cycle etc. The life cycle
of an JADE agent which is FIPA compliant are shown in figure 5.15.

Figure 5.15: JADE agent life cycle

As seen from the figure a JADE agent can be in one of several states[24],
which are described below:

• Initiated: the Agent object is built, but hasn’t registered itself yet with
the AMS, has neither a name nor an address and cannot communicate
with other agents.

• Active: the Agent object is registered with the AMS, has a regular
name and address and can access all the various JADE features.

• Suspended: the Agent object is currently stopped. Its internal thread
is suspended and no agent behaviour is being executed.

• Waiting: the Agent object is blocked, waiting for something. Its inter-
nal thread is sleeping on a Java monitor and will wake up when some
condition is met (typically when a message arrives).

20http://jade.tilab.com/description-quickinfo.htm

5.9. SUITABLE FRAMEWORKS 77

• Deleted: the Agent is definitely dead. The internal thread has termi-
nated its execution and the Agent is no more registered with the AMS.

• Transit: a mobile agent enters this state while it is migrating to the
new location. The system continues to buffer messages that will then
be sent to its new location.

5.9.7 Jason

Jason is a Java-based interpreter for an extended version of AgentSpeak21.

Besides interpreting the original AgentSpeak(L) language, Jason also fea-
tures:

• strong negation, so both closed-world assumption and open-world
are available;

• handling of plan failures;

• speech-act based inter-agent communication (and belief annotations
on information sources);

• annotations on plan labels, which can be used by elaborate (e.g., de-
cision theoretic) selection functions;

• support for developing Environments (which are not normally to be
programmed in AgentSpeak; in this case they are programmed in
Java);

• the possibility to run a multi-agent system distributed over a network
(using SACI);

• fully customisable (in Java) selection functions, trust functions, and
overall agent architecture (perception, belief-revision, inter-agent com-
munication, and acting);

• a library of essential internal actions

• straightforward extensibility by user-defined internal actions, which
are programmed in Java.

Jason is a Java-based agentSpeak interpreter used with saci for multi-agent
distribution over the net. AgentSpeak(L) has been one of the most influ-
ential abstract languages based on the Belief Desire Intention (BDI) archi-
tecture. The type of agents specified with AgentSpeak(L) are sometimes
referred to as reactive planning systems. To the best of our knowledge, Ja-
son is the first fully-fledged interpreter for a much improved version of

21http://jason.sourceforge.net/

78 CHAPTER 5. MULTI-AGENT SYSTEM

AgentSpeak, including also speech-act based inter-agent communication
[11].

5.9.8 MadKit

MadKit is a multi-purpose, distributed multi-agent platform used in var-
ious project over the entire world. Especicially the MadKit framework is
used for researching purposes, since this platform is open source and de-
veloped with Java and free for download an usage. Developers can use
Madkit to make basic products used in commercial applications22.

The concept of MadKit is based on micro-kernel and agent-identification
services. The micro-kernel is small, thus the agents offer the most impor-
tant services needed in ones application.

The MadKit framework is organizational oriented, and uses agents, roles,
groups as standard components for building complex applications based
on MAS. There are no requirements for the internal structure of an agent,
thus developers can customize agents to satisfy their needs. Communica-
tion in MadKit is socket-based, allowing decentralized agent architectures.

MadKit provides a graphical environment for development of agent sys-
tems, as well as a graphical runtime agent environment. Using this facility,
developers can create simple environments and agents, without having to
think about designing a graphical environment, since it is provided.

Within minutes one can download and install the MadKit framework from
their website23, and it is highly usable for developing fast and simple agent
based applications.

5.9.9 MPA

The Multi-Agent Planning Architecture (MPA) is a research program within
the DARPA/ROME Planning Initiative (ARPI)24 which focuses on studies
and academic research into the area of military operational planning and
scheduling in order to address tomorrow’s technology.

MPA is organized around the concept of a planning cell, wherein a collec-
tion of agents is committed to one particular planning process[50]. A plan-
ning cell contains a planning cell manager agent and plan server agent.
The planning cell manager agent has a planning cell from a community

22http://www.madkit.net/site/madkit/doc/userguide/userguide.html
23http://www.madkit.net
24http://www.ai.sri.com/ wilkins/mpa/

5.9. SUITABLE FRAMEWORKS 79

of agents, and distributes planning task among selected agents. The cen-
tral repository for plans is the plan server agent, which holds plan-related
information during the course of planning a task, that is obtained from ac-
cepting incoming information from Planning Agents(PA), then by perform-
ing processing, storing information, and making this information available
to any PA through queries. Agents communicate with KQML messages.

Figure 5.16: MPA single planning cell

MPA concerns Multi-Agent Planning, visualization and simulation, which
specifically addresses a human planner’s ability to rapidly obtain multiple,
significantly different alternative courses of action, evaluate them, select a
primary candidate, and have that primary plan fleshed-out and tuned to
take into account special requirements and considerations. Part of the chal-
lenge is balancing the need to have humans provide ultimate control and
oversight vs. the need to respond with plans and schedules very quickly.

MPA provides services to a range of requests by defining a range of generic
planning agents. Agents in MPA has various properties, such as providing
partial or overall plans, reporting incremental progress, and by continu-
ously responding to new conditions, constraints and suggestions. It is the
meta-Planning Agents, which holds specialized knowledge about strate-
gies for dividing work, conflict resolution and future plan merging. Every
meta-Planning Agent has a collection of PA’s and other planning clusters.
A meta-PA is responsible for coordinating the activities of the collection of
PAs and other planning clusters.

80 CHAPTER 5. MULTI-AGENT SYSTEM

The MPA framework has proven its usability to large-scale problem solv-
ing, i.e. the Air Campaign Plannning (ACP), which integrated a set of tech-
nologies such as scheduling, temporal reasoning simulation and visual-
ization. Development and evaluation of a complex plan with over 4000
nodes has cooperated these technologies [49]. Demonstrations shows mul-
tiple asynchronous agents cooperatively generating a plan or set of alter-
native plans in parallel, a meta-PA reconfiguring the planning cell during
planning, and agents running on different machines both locally and over
the Internet. MPA demonstrations employ technologies developed outside
SRI, show a flexible and novel combination of planning and scheduling
techniques, and demonstrate dynamic strategy adaptation in response to
partial results.

5.9.10 ZEUS

Many toolkits and frameworks have been developed over the past decade
to aid agent development. ZEUS provides class libaries and user-customizable
components for users of the Java programming language, since the moti-
vation for building the ZEUS agent building toolkit, was to create a general
framework based on general architectures and methologies, for develop-
ing collaborative agent systems, wherein agents work together to archieve
a shared goal [38].

In order for the agents to communicate a common transport protocol is re-
quired, and an inter-agent communication protocol. Agents must be able to
reason, in order to know when to reqeust and release resources, and when
to collaborate with some other agent, in order to fulfil its goal.

We can categorise the ZEUS toolkit into three main functional groups: an
agent component libary, a visualization tool, and agent building software(see
figure 5.17):

1. The agent component libary: The first functional group is the agent
component libary, wherein java classes form the building bloks of the
agents. All classes are composed in a Java package for easy usage.
Using this package all the functionallity required in order to imple-
menting collaborative agents are in place. For communication pur-
pose among agents a performative-based inter-agent communication
language called KQML is included in the toolkit, which is expected
to be upgraded to FIPA´s ACL protocol for inter-agent communica-
tion in the future, thus the message-passing system is currently asyn-
chrounous socket-based. A generic planning and scheduling system
is also included in ZEUS which makes it useful to our project.

2. The visualization tool: The second functional component gives the

5.9. SUITABLE FRAMEWORKS 81

Figure 5.17: ZEUS: functional groups of the class libary

developer a posibility of monitoring the agents, one can look at theese
visualization tools as a place to collect global information about all
agents, which is quite good for debugging purpose and for making
statistics.

3. The agent building software: Application programmers are allowed
to monitor changes in the internal state of an agent, by using an event
model along with an API.

Figure 5.18 which have been adapted from [37], shows the architecture of
a generic ZEUS agent. We briefly describe the different elements in figure
5.18:

• Mailbox: handles communication between agents. A complex entity,
containing a server that accepts incoming messages.

• Message handler: processes incoming messages and dispatches them
to components within the agent.

• Coordination engine: coordinates the agents overall activities with
other agents based on the strategies specified in its knowledge base.
Is responsible for decision making, goal pursuing, goal abandoning.

• Acquaintance model: describes the agents relation to the society in
which it resides, and its beliefs concerning capabilities of other agents.

• Planner and scheduler: Plans the agents tasks based in its knowledge
base. Is dependent on the results generated by the coordination en-
gine, and the available definitions of tasks and resources.

82 CHAPTER 5. MULTI-AGENT SYSTEM

Figure 5.18: Architecture of a generic ZEUS agent

• Resource database: Lists the resources, that are available and and
owned by the agent.

• Ontology database: stores the logical definition of each fact type, its
legal attributes, the range of legal values for each attribute, any con-
straints between attribute values, and any relationships between the
attributes of the fact and other facts.

• Task/Plan database: provides logical descriptions of planning opera-
tors (or tasks) known to the agent.

• Execution monitor: starts, stops and monitors external systems, which
have been scheduled to run, or terminated by the planner and sched-
uler. It informs the coordination engine with result status.

5.10 Summary

In this chapter we have described the MAS technology including various
types of agents(sections 5.1.1 - 5.1.4). Furthermore we have described the

5.10. SUMMARY 83

Feature / Framework A
-g

lo
be

A
ge

nt
B

ui
ld

er

C
ou

ga
ar

D
EC

A
F

JA
C

K

JA
D

E

Ja
so

n

M
ad

K
it

M
PA

Z
eu

s

Survivability 4 4 4 4 4 4 (4) 4 4 (8)
JAVA Toolkit 4 4 4 4 4 4 4 4 8 4

Planning module 8 4 4 4 4 8 4 8 4 4

GPGP 8 8 8 (4) 8 8 8 8 8 8

ACL (FIPA/KQML) (4) 4 8 4 (4) 4 8 4 4 (4)
Open Source 4 8 4 4 8 4 4 4 8 4

Success 4 (8) 4 4 4 4 (8) 4 (8) 4

Well documented API 4 4 4 8 4 4 8 4 8 4

Well documentation 4 4 4 4 4 4 (4) 4 8 4

BDI 8 4 8 (4) 4 8 4 8 (8) 8

Table 5.5: Features of suitable MAS frameworks

AEIO paradigm(section 5.4), which concerns composing a multi-agent sys-
tem into agents, environment, interaction and organization. We have briefly
described the BDI agent architecture(section 5.5).

We have described ten different MAS frameworks that are all candidates
for being used in our thesis project. The frameworks and their features are
summarized in table 5.5.

We have chosen to design our multi-agent system in the Decaf and Cougaar
frameworks respectively. The reason for this choice have been that they
both satisfy most of the requirements as seen in table 5.5. These two frame-
works are very different, which have also influenced our decision. Futher-
more the Cougaar framework have been used to solve logistic problems
before in projects like ALP and Ultra*Log as described in section 3.2 and 3.3
respectively. Likewise Decaf contains a GPGP module for planning and co-
ordination purposes, which have proven to be useful to solve logistic prob-
lems in other related projects, such as the hospital scheduling problem de-
scribed in section 3.1. Both frameworks are open source, well documented
and Java based, which we also considered to be of major importance.

4 = supported feature, (4) = partly supported feature
8 = unsupported feature, (8) = probably unsopperted feature / Unknown

Chapter 6

Middleware

In this section we are going to understand the term middleware, and
why we need it. At last we then look at some various types of it.

6.1 Definition and middleware types

The following definition of middleware have been adapted from the ency-
clopedia site Wikipedia1:

Middleware is the enabling technology of Enterprise application in-
tegration. It describes a piece of software that connects two or more
software applications so that they can exchange data.

This definition describes middleware as software, which has the ability to
connect two or more software applications, so that the applications can un-
derstand each other and exchange data.

6.2 The need for a Middleware Application

In this thesis we will design a simulation model with Automod, and two
multi-agent systems(Decaf and Cougaar). The simulation model should be
used for visualizing the OSS environment, including static elements like
buildings, storage locations, the road system, and dynamic elements, such
as the KAMAG vehicles and the ship blocks. Since the dynamic changes
are controlled by the multi-agent systems, the middleware should make it
possible for the simulation model and the two multi-agent systems to ex-
change data.

1http://en.wikipedia.org/wiki/Middleware

84

6.2. THE NEED FOR A MIDDLEWARE APPLICATION 85

To simplify and to modularize the complete system, we have chosen to use
a middleware application. The system which is going to be built can be
seen in figure 6.1.

Figure 6.1: System

The advantage of using a middleware application is that we can built a part
of the overall system, as shown in figure 6.2, meaning that we can built the
simulation model and control it by means of a feeder, without looking at
MAS at all. The feeder is just a GUI-application, where a user can enter
some commands and see the reactions in the simulation model. So the user
sitting in front of the feeder application is acting as an agent. This approach
makes it possible to verify the simulation model before connecting it with
a multi-agent system.

Figure 6.2: System with Feeder

When the system shown in figure 6.2 is implemented, the multi-agent sys-

86 CHAPTER 6. MIDDLEWARE

tem can be designed, resulting in a complete system as shown in figure
6.3.

Figure 6.3: Complete System

6.3 Types of Middleware

There are various types of middleware that can be used to connect two
different pieces of software. We can categorise typical middleware types as
the following2:

• Remote Procedure Call: Client makes calls to procedures running on
remote systems.

• Publish/Subscribe: This type of middleware monitors activity and
pushes relevant information to subscribers.

• Message Oriented: Messages sent to the client are collected and stored
until they are acted upon, while the client continues with other pro-
cessing.

• Object Request Broker: This type of middleware makes it possible
for applications to send objects and request services in an object-oriented
system.

• SQL-oriented Data Access: Middleware between applications and
database servers.

2http://en.wikipedia.org/wiki/Middleware

6.4. MIDDLEWARE TYPE ALTERNATIVES FOR AUTOMOD 87

In the complete system shown in figure 6.3 we have a Middleware appli-
cation connecting the simulation model with a multi-agent system, thus
requiring two middleware types as shown in figure 6.4; one type connect-
ing the simulation model to the middleware application, and another for
connecting the multi-agent system with the middleware application. The
middleware application can thus be seen as a translator translating data
from the multi-agent system to a format, which can be understood by the
simulation model and vice versa.

Figure 6.4: Middleware types

6.4 Middleware Type alternatives for AutoMod

The simulation environment in AutoMod can be accessed in two ways3:

1. Active X

2. Socket Communication

By ActiveX the simulation can be accessed directly from the middleware
and it is possible to execute functions in Automod model from the middle-
ware (see the ActiveX design in section 10.6). Objects can be sent between
middleware and simulation, which also makes this approach very flexible.

By socket communication the AutoMod simulation model can be accessed
with messages. A message can consist of the data formats, “String”, “Real”
and “Integer”. The benefit of using sockets instead of ActiveX is that the
middleware will not have to run at the same machine as the simulation
model. The middleware and simulation model only needs to be connected
by a network.

The ActiveX in Automod can be classified as a Object Request Broker type,
because the middleware can call functions in the simulation which in turn

3A third alternative is OPC communication, which is used if there are OPC servers in
the system that are going to be emulated. This is not the case in our thesis.

88 CHAPTER 6. MIDDLEWARE

can return objects as a result to the middleware.

The socket communication in general can be classified as a Message ori-
ented type, because messages are sent between two sockets using an un-
derlying transportation protocol called TCP4 or UDP5.

We have chosen ActiveX as middleware type between the AutoMod sim-
ulation model and the middleware application, because it provides faster
access, and the ability to access simulation model objects directly.

4Transmission Control Protocol
5User Datagram Protocol

Part III

Design

89

Chapter 7

Data structures

Data structures are used for representing data. There are data struc-
tures which are more suitable than others in specific situations, for
example when developing a software dictionary a hash tabel is a

good data structure to use [3].

This chapter presents methods for representing a graph [3], which can be
used to represent the road system at OSS. The advantage of using a graph is
that there exist a lot of well documented graph algorithms, that are useful
for path finding. Furthermore we describe TAEMS, which is a language for
structuring tasks.

7.1 Graph Representation

Informally, a graph is a finite set of points, referred to as vertices or nodes,
some of which are connected by lines or arrows, called edges [9]. If the
edges in the graph are undirected or bi-directional, the graph is called an
undirected-graph or simply a graph. If the edges in the graph are directed
or one-directional, then the graph is referred to as a directed graph or di-
graph. In general the term “graph” refers to both undirected and directed
graphs.

In the OSS domain all roads are bi-directional, therefore we will use an
undirected graph to represent the road system at OSS(described in sec-
tion 9.3). The following formal definition of an undirected graph has been
adapted from [9]:

Definition 7.1 Undirected graph
An undirected graph is a pair G = (V, E), where V is a set whose ele-
ments are called vertices, and E is a set of unordered pairs of distinct

90

7.1. GRAPH REPRESENTATION 91

elements of V. Vertices are often also called nodes. Elements of E are
called edges, or undirected edges for emphasis. Each edge may be con-
sidered as a subset of V containing two elements; consequently, v, w
denotes and undirected edge. In diagrams this edge is the line v—w. In
the text we simply write vw. Of course, vw=wv for undirected graphs.

Furthermore roads in at the OSS domain have lengths referring to their
distances, which should be represented in the graph. This can be repre-
sented using a so called weighted graph. The following formal definition
of a weighted graph has been adapted from [9]:

Definition 7.2 Weighted graph
A weighted graph is a triple (V, E, W) where (V, E) is a graph (directed
or undirected) and W is a function from E into R, the reals. (Other
types for weights, such as rationals or integers, may be appropriate for
some problems.) For an edge e, W(e) is called the weight of e.

Figure 7.1 shows a weighted undirected graph, which is a sub-graph of the
graph shown in figure 9.4. The nodes 1 to 8 in figure 7.1 corresponds to the
nodes S811_1, V111_1, V111_2, U211_1, U316_1, V122, U316_2 and V211_1
in figure 9.4 respectively.

Figure 7.1: A weighted graph. Subpart of the graph in figure 9.4.

There are two standard ways of representing a graph: as an adjacency ma-
trix or as a collection of adjacency lists, which are both applicable on di-
rected and undirected graphs. Typically one will use adjacency lists when

92 CHAPTER 7. DATA STRUCTURES

1 2 3 4 5 6 7 8
1 0 13 ∞ 31 23 ∞ ∞ ∞
2 13 0 8 33 24 ∞ ∞ ∞
3 ∞ 8 0 ∞ ∞ 30 ∞ ∞
4 31 33 ∞ 0 ∞ ∞ 24 ∞
5 23 24 ∞ ∞ 0 ∞ 13 ∞
6 ∞ ∞ 30 ∞ ∞ 0 ∞ 30
7 ∞ ∞ ∞ 24 13 ∞ 0 49
8 ∞ ∞ ∞ ∞ ∞ 30 49 0

Table 7.1: The adjacency matrix of the graph in figure 7.1

dealing with sparse graphs, where |E| is much less than |V|2, because it
requires less memory than an adjacency matrix. An adjacency matrix is pre-
ferred when the graph is dense, i.e. |E| is close to |V|2. Table 7.1 shows
the adjacency matrix for the graph in figure 7.1 and figure 7.2 shows the
adjacency lists.

Figure 7.2: The adjacency lists of the graph in figure 7.1

7.2. TAEMS 93

7.2 TAEMS

Task Analysis, Environment Modeling and Simulation (TAEMS) is a mod-
eling language for describing the task structures of agents and is used as
a framework for environment centered analysis and design of coordina-
tion mechanisms [31]. The representation of agent activity should make it
possible for multiple individual agents to contribute to independent and
different high-level goals.

An agent must have a representation of what its capabilities are, and the
agent must be able to reason about its potential actions in the context of
its working environment. TAEMS provides a task structure describing the
tasks an agent can perform. TAEMS represent a wide range of ways a
particular task can be performed, by adding features to conventional task
structures, such as quantitive action characterizations, and explicit models
of local and remote interactions and mechanisms.

Even though the details associated with TAEMS is very comprehensive, its
structure and function are actually based on a few simple concepts. The
TAEMS task structure is a commented task decomposision graph, but it is
referred to as a tree for simplicity.

• Highest level nodes : are the task groups, which represents goals that
an agent may try to achieve.

• The level below the task groups : is a sequence of tasks and methods
describing how the corresponding task group may be performed.

• Tasks : represents sub-goals, that can be decomposed further.

• Methods : are terminal (leaves in the tree), which represent the actions
an agent can perform.

Tasks contains annoations that describe how sub-tasks may be combined
to satisfy the given task. Interrelationship is another type of annotation,
which describes how achievement of goals or execution of methods affects
other nodes in the structure. There exist several interrelationships that de-
scribes various situations. We can have several task tree structures with in-
terrelationships between them, called non-local interrelationships, which
indicates agents having knowledge about other agents capabilities. The
non-local interrelationships implicit describe situations where negotiation
or coordination may be desired.

In figure 7.3 an example of a TAEMS task structure is shown, containing a
task group, which consists of three tasks and their corresponding methods

94 CHAPTER 7. DATA STRUCTURES

and interrelations.

Figure 7.3: An example of a TAEMS task structure

Enables relationship

An enables interrelationship is a hard variety of a interrelationship, in that
sence that if a task enables a method, that method is not accesible until the
task have been completed. Thus, if a task, executing a method M1, enables
method M2, then M2 can not run until M1 is completed.

As an example, let us assume we have two tasks; task A, which concerns
bying some food, and task B, which cencers eating some food. If we do
not have any food, then task A, enables task B, meaning that we can not
eat, before we have bought some food, thus enables is considered a hard
relationship.

Facilitates relationship

A task A can facilitate another task B, meaning that task A for instance de-
screases the duration of processing of task B, or that it increases the quality
of task B. Facilitates is a soft relationship in the sence that task B can execute
even if task A has not yet been executed.

As an example, if we say we have a task A, which is heating some food
in a microwave, and a task B, which is eating the food, then we could cer-

7.2. TAEMS 95

tanly eat the food (execute task B), without heating it first (performing task
A), but if we warm up the food before we eat it, then the outcome of eat-
ing, would result in greater satisfaction, thus facilitates is considerd a soft
relationship.

Hinders relationship

Hinders is the opposite of facilitates, meaning that if task A hinders task B,
then task A will increase duration of task B and/or decrease the quality of
task B.

As an example, consider a married couple driving to visit some friends, if
we say that task A is the man driving in order to reach their destination,
and task B is the wife giving bad directions, then performing task B, will
result in increasing the duration of task A. Hinders is, as facilitates, a soft
relationship.

Precedes relationship

Precedes is a combination of enables and hinders, so if task A precedes task
B, then task A must finish before task B and task A must be done well, or
later tasks(including task B) will suffer from it.

Favor relationship

The favor relationship is actually not a new kind of relationship, but can be
any relationship, which has a positive effect.

Chapter 8

Algorithms

A good path-finding algorithm is essential to artificial intelligence,
thus this chapter present several algorithms which can be used
for path finding. Furthermore coordination of multiple agents in

a system requires some sort of coordination algorithm, which is why we
have described some strategies and algorithms.

8.1 Path-finding basics

Path finding can be reduced to getting from point A to point B [12]. A path
from one point A to another point B can potentially have different solu-
tions, but ideally we want a solution that solves the following goals:

1. How to get from A to B

2. How to get around obstacles

3. How to find the shortest possible path

4. How to find the path quickly

There are path-finding algorithms which solve all of the above problems
and algorithms that solves none of them, for example if one wishes to travel
from Denmark to Canada by train, then there exist no solution, unless you
can get a ship too sail to Canada with the train.

8.2 Breadth-First Search

Breadth-First Search (BFS) involves visiting nodes one at a time in a graph
[12, 3]. The nodes are visited in order of their distance from the source node,
where the distance is measured as number of traversed edges. Nodes one
edge away from the source node is thus investigated first, and so on until

96

8.3. A* SEARCH 97

all nodes are visited on the way to the goal. This method ensures that you
find a path from source to destination with minimum number of edges.
Another way of explaining this, is to visit all your neighbors first, then visit
all your neighborś neighbor nodes, and continue this process until the goal
is found. Figure 8.1 shows an example of the breadth-first search algorithm,
wherein the nodes are numbered based on the search succession.

Too avoid obstacles with BFS make sure that no obstacles are connected
to any nodes, but nodes are only connected were it should be possible too
travel.

Figure 8.1: An example of breadth-first search, and the nodes are numbered
in the order of the search

To keep track of all the nodes, We put all visited nodes in a “closed” list, and
the nodes we intend to visit in an “open” list. If we encounter a node that is
already in the closed list we simply ignore it, thereby avoiding visiting the
same node twice. The open list is a First In First Out (FIFO) list, meaning
that the first nodes in the list are also the first nodes we look at.

8.3 A* Search

The A* –pronounced “A-star”– search algorithm is an extension of the
breadth-first algorithm [12], which is already integrated widely as part of
the artificial intelligence in several computer games. Following extra fac-
tors are included in the A* search algorithm:

• Edges are given different “cost”, which indicates the cost of traveling
from one node to another.

98 CHAPTER 8. ALGORITHMS

• The cost from any node to the goal node can be estimated, which
helps refine the search, such that we are less likely to search in the
wrong direction.

The cost between the nodes do not have to be the distance, it could also be
the time it takes to travel from one destination to another. We can imagine
roads on which it takes longer time to travel even though the distance is
shorter, for example in places with lots of traffic or narrow places, where
we have to drive with caution, thus decreasing the speed of the vehicle
and increasing the traveling time. The A* algorithm works the same way
as BFS, except for these changes:

• The nodes in the open list are sorted by the total cost from the start to
the goal node, thus it is a priority queue. The total cost is the sum of
the cost from the source node to the goal node.

• A node in the closed list can be move back to the open list if a shorter
path (less cost) to that node is found.

The open list is now sorted by the estimated cost instead of the FIFO method
in BFS, which means that it searches the nodes that are more likely to be in
the direction of the goal. Figure 8.2 shows an example of an A* search in
a graph, where node A is the start location and node H is the destination.
In each node the estimated cost is specified (the estimated cost in this case
is the direct distance to node H), e.g. the estimated cost from node B to the
destination node H is 300. The red spots indicate the sequence of the nodes
that are analyzed when the algorithm searches for the shortest path from
node A to node H (See section 14.4.4 for implementation specific details
about the A-star algorithm).

8.4 Dijkstra’s algorithm

Dijkstraś algorithm is a greedy algorithm that solves the single-source short-
est path problem for a weighted directed graph G = (V, E) with non-negative
edges w(u, v) ≥ 0 for each edge (u, v) ε E [3].

The algorithm maintains two sets of nodes S, which starts out empty and
Q, which starts with all nodes in V. The set S contains all nodes, whose final
shortest-path weights from the source s have already been determined, and
the set Q contains all the other nodes. When the algorithm is done all nodes
will be in the set S, and the set Q will be empty.

Dijkstraś algorithm is greedy, and thus it repeatedly selects the node u ε V -
S with the minimum shortest-path estimate, then adds u and relaxes all the

8.4. DIJKSTRA’S ALGORITHM 99

Figure 8.2: An example of A* search. All edges have a cost, and the most
thick path indicate the shortest path from A to B.

edges leaving from u.

The algorithm works by holding the cost d[v] of the shortest-path found so
far for between the source s and the node v. Initially, the value is 0 for the
source node s (d[s]=0), and infinity for all other vertices, which represents
that we do not know any path leading to those nodes, thus d[v]=? for each
node v ε V, except s. When the algorithm is finished, d[v] equals the cost of
the shortest path from the source s, which will be infty if there exists no
path to that node.

Dijkstraś algorithm makes a minimum spanning tree (MST), which a lot-
similar to the MST created with the PRIM algorithm, the difference is that
the spanning tree spans from a single source, which we specify, and calcu-
lates the shortest distance to all nodes from that source. The figure 8.3 (fig-
ure 24.6 from [3]) shows the execution of Dijkstra’s algorithm on a graph
with 5 nodes and 10 edges.

100 CHAPTER 8. ALGORITHMS

Figure 8.3: Example of Dijkstraś algorithm. The shortest-path estimate are
shown in the nodes, and shaded edges indicate predecessor values. Black
nodes are in set S, and white nodes are in set Q = V-S. The last figure f
shows the value d for every node.

8.5 Generalized Partial Global Planning

This section concerns Generalized Partial Global Planning (GPGP), which
is a family of generic coordination mechanisms for coorporative, soft real-
time computational task environments [16]. GPGP form a basis set of coor-
dination mechanisms for teams, which consist of cooperative agents.

Partial Global Planning (PGP) do not handle deadlines, thus PGP is not
suitable when dealing with systems with real-time constraints. In “real-
time” problem solving agents may have goals with strict deadlines, which
ads constrains to the plan activity. Planning is often reactive in real-time
situations, rather than reflective, where a sequence of actions is planned
out in some detail prior to execution. The reason for reactive planning is
that the agents should be able to respond quickly to changes in the envi-
ronment, and because the outcome of the actions might be too uncertain
when planning too far in the future.

There are three basic areas of agent coordination behaviour specified with
GPGP:

• Consider a current problem situation, when and how do we construct
and communicate non-local views.

• When we have partial results of problem solving, when and how do

8.5. GENERALIZED PARTIAL GLOBAL PLANNING 101

we exchange those results.

• how and when to make and break commitments to other agents about
what results will be available and when

In the following sections we describe how GPGP covers the areas men-
tioned above, with a local scheduler and a family of generic coordinating
mechanisms.

8.5.1 The Local Scheduler

Every agent contains a local scheduler, that produces a schedule of what
methods to execute and when. The local scheduler takes the agents subjec-
tive believed task structure as input, which contains information regarding
potential duration,potential quality and the relationships between meth-
ods, such that the scheduler can choose and order the executeable meth-
ods. This is used maximizes to maximize a pre-defined utility measure for
every task group T, where the utility function is the sum of the task group
qualities.

The scheduler accepts a set of commitments C from the coordination com-
ponent. Commitments is used as contraints on the schedules produced by
the local scheduler. If we for instance have two agents; agent A, which ex-
ecutes method 1, and agent B, that executes method 2, then if the methods
are redundant, agent A could make the commitment to agent B, that it will
execute the method and share the result with agent B. Commitments be-
tween agents are also called non-local commitments (NLC).

More than one schedule may be produced by the local scheduler as result
of the scheduler trying to satisfy the set of commitments when not all com-
mitments can be met. A function Violated(S) called with the schedule S,
returns a set of commitments that are believed not to be met in that sched-
ule.

An ideal local scheduler would produce a schedule with a maximum util-
ity measure and a schedule with maximum utility that satisfies all com-
mitments, but in practice a set of schedules are produced where the utility
measure is not neccesarily optimal.

8.5.2 GPGP Coordinating Mechanisms

Generalized partial global planning contains five coordination mechanisms;
updating non-local view-points, communicating results, handling simple
redundancy, handling hard coordinating relationships and handling soft
coordinating relationships.

102 CHAPTER 8. ALGORITHMS

Mechanism 1: Updating Non-local View-points

Agents - in the context of GPGP, only have a partial, subjective view of
the present episode. Partial views can be increased by sharing non-local
information, and agents can even communicate all their private structural
information in an attempt to create a global subjective view.

This mechanism can be used for updating non-local views among agents,
by communicating all private information, some information, or no private
information. When choosing to communicate some information, a partal
view that is, then the agent only communicates information, that are related
to another agent by a coordination relationship. A information gathering
action called “detect-coordination-relationships” is used to detect coordi-
nation relationships between private and shared parts of task structures,
when a new task structure arrives.

Mechanism 2: Communicating Results

This coordinating mechanism has three possible policies:

• Minimal Policy : Communicate only the results neccesary to satisfy the
commitments (local view).

• Task Group Policy : Communicate the results like with minimal pol-
icy, and the final result of a task group (partial view).

• All policy : Communicate all results (global view).

Mechanism 3: Handling Simple Redundancy

An example of a GPGP coordination mechanism is one that handles sim-
ple method redundancy. If more than one agent has an otherwise equiv-
alent method for accomplishing a task, then an agent that schedules such
a method will commit to executing it, and will notify the other agents of
its commitment. If more than one agent should happen to commit to a re-
dundant method, the mechanism takes care of retracting all but one of the
redundant commitments

Mechanism 4: Handling Hard Coordinating Relationships

Hard relationships include relationships like enables, which was described
in section 7.2. The direction of the hard coordination relationship is further
distinguished, meaning that currently only the predessor is aware of the
relationship.

8.5. GENERALIZED PARTIAL GLOBAL PLANNING 103

Mechanism 5: Handling Soft Coordinating Relationships

Soft relationship include relationships like facilitates and hinders, which
was described in section 7.2 and 7.2 respectively. At the moment the facil-
itates relationship is directed, and only the predessor of the relationship
is aware of the relationship. The hinders relationship, should opposite the
facilitates relationship be placed at the successor.

Chapter 9

Solution Strategies

In this chapter we propose solution strategies for solving the transporta-
tion problem at OSS based upon multi-agent technology.

Our problem can be divided into two main problems:

• Transporting: Transporting a ship block from one location to another
using a KAMAG vehicle.

• Coordinating: Coordinating transportations, i.e. make a logistic plan
regarding what KAMAG should be used to transport a certain block,
and at what time.

9.1 Organization of agents

A central discussion in a multi-agent system is where to place the agents.
There are many possibilities. In this section we describe where we have
placed our agents and how that will effect the organization, interaction and
environment in which the agents reside. We have considered alternative
agent placements, and will cover those briefly.

In the research phase, wherein the problem domain was investigated, we
implicitly categorized the actors in context of the daily transportation at
OSS, which is exactly where we place our agents.

Actors -in context of the problem domain, include the following:

• C-planners

• D-planners

• Kamag vehicles

104

9.1. ORGANIZATION OF AGENTS 105

As mentioned earlier C-planners requests transports from the D-planner,
which coordinate transports and delegates transportation tasks to kamag
vehicle drivers. The geographical placement of the various C-planners can
be seen in figure 9.1, which includes C-planners from B4, B6, B9, the paint
halls, the south hall and the east hall. We will model the C-planners as Plan-
ner Agents (PAs), and from now on refer to theese agents as PAs. We model
the D-planner as a Coordinator Agent (CA), and this agent will from now
on be referred to as the CA. The Kamag Vehicles, will be modelled with Ka-
mag Vehicle Agents (KVAs), and will from now on be referred to as KVAs.
The relation between the CA, PAs and the KVAs can be seen on figure 9.2.

Figure 9.1: Geographical placement of various C-planners

106 CHAPTER 9. SOLUTION STRATEGIES

Figure 9.2: Agent Organization showing the relation between PAs, the CA,
and the KVAs. Planner agents can communicate with each other, and with
the CA. The CA can communicate with any PA and any KVA, and each
KVA can communicate with each other.

The agent organization clearly indicates that the human planning hierarchy
have been preserved, which will impact the agents subjective perception of
their environment, their interaction, and organization.

9.1.1 Planner Agents

Planner agents are human controlled, thus we have designed a graphical
interface, that allows planner agents to plan and replan transportations,
and give them a dynamically updated view of the consequences of their
transportations, such as estimated arrival at pickup location and destina-
tion location of a given transportation. Planner agents request daily trans-
portations of ship blocks, that should be transported from one location to
another location at a specific deadline. Transportations are given a priority,
that indicates how important the task is.

Priority 1 : the highest priority, which can only be given to transporta-
tions to the gantry crane, indicating a very strict deadline.

Priority 2 : indicates that this transportation is urgent.

9.1. ORGANIZATION OF AGENTS 107

Priority 3 : indicates that this transportation is not urgent, meaning a
non-strict deadline.

9.1.2 Kamag Vehicle Agents

A KVA should have different mechanisms it can use to solve different sub-
task, such as

• Route-planning: calculating a path from one location to another.

• Driving: follow a specific route, from one location to another

• Perceive: View of all locations which spans X locations from current
location.

• Estimating time: time estimating a given task, such as estimating how
long it will take to arrive at some destination.

• Block placing: picking up a ship block at its current location or putting
down a ship block at its current location.

• Communication: Receive tasks. Sending and receiving states, routes,
results and estimates.

Each KVA have a perception, which is used to view X locations ahead from
its current location. By using their perception, KVAs are able to detect each
other and obstacles in the environment. When two KVAs perceive each
other, they exchange routes in order to calculate if their paths will intersect,
and it is up to the agent to be proactive and or social in order to solve possi-
ble conflict. A conflict, meaning a route intersection between two KVAs will
require negotiation and relocation of one of the KVAs. Figure 9.3 illustrates
the perception of a KVA in its environment, see section 9.3 for a description
of the agent environment.

108 CHAPTER 9. SOLUTION STRATEGIES

Figure 9.3: Example of KVA perception, where all locations within
a distance of two locations from the KVA are included. The grey
nodes(loactions) indicate the KVA perception

9.1.3 The Coordinator Agent

The CA should have mechanisms for receiving plans from PAs, to coordi-
nate the plans into schedules, delegating tasks to KVAs and to update the
schedules dynamically when changes occur. The CA should have a mecha-
nism for dynamic planning and replanning with Kamag vehicle agents. If a
certain transportion request from a PA can not be satisfied by any KVA, the
CA should report this information back to the PA, such that the PA have
the option of changing a request.

The strategy used when coordinating the transports is to sort the trans-
port request in assending order with repect to the deadline set on the re-
quest, when received from planner agents. The coordinator then forwards
the transportation request to the KVAs, which then reports a Bid on when
they solve the task, or a failure notice if it is not posible to solve the task,
and the KVA with the best bid is delegated the task.

9.1.4 Alternative agent placements

A possibility of placing agents different from our solution, could be placing
agents at every control point(location), which should have the responsibil-
ity of navigating travelling vehicles around the road system, much like how
routers navigate packages around within the internet.

One could also have placed agents at every storage location, making stor-
age agents negotiate on where to place a given shipblock.

9.2. AGENT INTERACTION 109

If we look at an abstraction level higher, taking the B-planner into account
at the shipyard, then it would be possible to model the entire flow of ev-
ery shipblock through the system, and it would resemble a traditional pro-
duction flow control system. The various B-planners should then be orga-
nized as agents, and then the C-planners would be fully automated nego-
tiating with both the B-planners and D-planners at the shipyard (see sec-
tions 2.2.2, 2.2.3 and 2.2.4). When looking at this abstraction level, it would
make sence to place agents in each shipblock, since the shipblock agents
then could have knowledge regarding their destined flow in the system,
and it would be possible for the shipblock agents to request different ser-
vices from other agents, such as the transportation service like we have
modelled, and futher to use supply, equipment and paint agents.

Summary of agent placement

There exist endless posibilities on where to place agents in a system, and
it is thus in the hands of the developers that designs the systems. We have
choosen to place our agents, where the human actors naturally reside in the
problem domain, in order to preserve the human organization.

9.2 Agent Interaction

As described in section 9.1, the PAs sends information to the CA holding
transportations requests, the CA coordinates theese request, and delegates
tasks to KVAs.

How the agents communicate is highly dependent on what multi-agent
framework is being used, thus we refer to chapter 12 for communication in
the Cougaar framework and chapter 11, which descripes agent interaction
with Decaf.

9.3 Agent Environment

We represent the Agent environment at OSS with a graph data structure
as seen in figure 9.41. The nodes form together with the edges the road
system, where KVAs can travel. There are placed nodes at every intersec-
tion between roads. There can only travel one KVA on a road (edge) at a
time. We have colored the graph to give a better overview of the placement
of storage locations, painting halls, production and equipment halls, and

1If you are reading the pdf version of this thesis, you can zoom in at any node to see its
name

110 CHAPTER 9. SOLUTION STRATEGIES

parking lots.

Figure 9.4: Graph representation of the Agent environment. All nodes are
control points where Kamag vehicle Agents (KVA) can travel between. Red
nodes indicate storage locations. Green nodes indicate painting halls. Blue
nodes indicates production and equipment halls. Yellow nodes indicate
parking lots for KVAs.

The costs on the edges are omitted on figure 9.4 in order to simplify the
overview of the graph. The real distances between each node have been
calculated with the use of Automod, which have procedures to calculate
distance from on location to another. The distances have been put in the
graph data structure, and we have named the nodes so that they comply
with the naming conversion used in Automod for simplifying communica-
tion between the multi-agent system and the simulation model.

If we take a look at the class diagram in figure 9.5, we get an idea of the as-
sociation between nodes, edges, KVAs, ship blocks, obstacles and queues.
The class diagram have been made with OO notation and is used to in-
dicate an abstract graph entity association, which will be mapped into a
multi-agent design approach later on .

• Nodes : Nodes are all locations, where a KVA can be at, and travel
between, we also refer to theese locations as control points (CP).

• Edges : Edges are roads that connects nodes, there can be one or
more roads entering or leaving a node.

9.4. FINDING THE SHORTEST PATH 111

Figure 9.5: Class diagram showing associasions between entities in a graph

• KVA : There can be at most one KVA on a road or at a control point
at a time. A KVA can carry multiple ship blocks.

• ShipBlock : A ship block can either be on a KVA or in a queue.

• Queue : A queue is a container for ship blocks. A queue can have dif-
ferent properties, such as storage, paint, production, equipment and
supply.

9.4 Finding The Shortest Path

Finding the shortest path from one location to another is important in or-
der to solve various subtasks, thus we have designed an algorithm, which
based on the A* search algorithm finds the shortest path from one control
point to another control point (see control point placement at figure 9.4).
The function findPath(o1, o2) takes two control points as input and returns
the shortest path in form of a list with the control points the vehicle must
travel to reach its destination.

9.5 Find The Nearest Location

An agent will experience several situations where it will come in handy to
know the location of the nearest free control point, that is not in a specific
route, for example when KVAs have to move out of each others way. A
dilemma is seen on figure 9.6 where KVAs will have to negotiate in order
to continue on their route.

We have designed a function called getNearestLocation(o1, o2), which takes
a route and a control point(CP) as an input and returns a control point (lo-
cation). The function creates a minimum spanning tree (MST) from a source

112 CHAPTER 9. SOLUTION STRATEGIES

Figure 9.6: Example of path interference between two KVAs route. The
route of the first KVA is red, and the route for the second KVA is marked
with blue color

location, where every control point is placed in a list (visitList), the list is
sorted in ascending order. We run through the visitList finding the first
control point that is free and not in the route list.

9.6. CONFLICT RESOLUTION 113

Figure 9.7: Example of a minimum spanning tree. The cost is written in the
nodes, and the nodes are random numbered, from CP1 to CP7, the source
node S indicates where the tree spans from

Figure 9.8: Control point from figure 9.7 sorted in ascending order

1. Calculate MST

2. Sort control points in ascending order

3. test: is CP free and not in the route list

4. return found CP or null if no free CP could be found

9.6 Conflict Resolution

When to KVAs needs to use the same route simultanously they have to ne-
gotiate in order to resolve, which KVA that gets to pass through first, and
which KVA that must wait or find another temporary location, while the
othe other KVA pass through. Figure 9.6 illustrates a scenario where two
KVAs have intersecting routes, and chooses to be social in order to resolve

114 CHAPTER 9. SOLUTION STRATEGIES

the conflict. Figure 9.9 shows the scenario after the negotiation where the
KVA with the blue route have moved out of the way for the other KVA
(with the red route). Figure 9.10 shows that KVA 1 perceives that KVA 2
has passed through its route, and thereby proceeds on its route. The con-
flict have been resolved.

Figure 9.9: Conflict solving with
socializing. The KVA with the
blue route, redirects to the first lo-
cation not in the route of the other
KVA(red route)

.

Figure 9.10: Conflict solving with
socializing. The KVA with the red
route has passed the KVA with
the blue, which perceives this in
its environment and continues on
its route.

The strategy we use to avoid KVA collision is that when a KVA perceives
another KVA, it socializes with the other KVA, exchanges routeplans, to-
gether they determine if their routes will intersect. If their routes intersect
they compare priority, the KVA with the lowest priority will move out of
the way. If both KVA transportations have the same priority, the KVA which
has the shortest path to a free location, will move out of the way.

9.7 Coordination of transports

The transportations at OSS are categorized into priority and deadlines, e.g.
ship blocks that are to be delivered at the gantry crane has the highest pri-
ority. Therefore the overall strategy used to coordinate the transportations
of ship blocks, is to sort and delegate the transportations in respect to their
priorities and deadlines. How the coordination will be performed is highly
dependent on the planning capabilities of the MAS framework being used.
Planning capabilities used for coordination purposes are for example util-
ity functions and GPGP, which were described in section 8.5.

9.8. SUMMARY 115

9.8 Summary

We have proposed solution strategies to the logistic planning problem at
OSS in terms of multi-agent technology.

• Agents: We have proposed a solution, where we use

– reactive planning agents, that are controlled by humans(C-planners).
The planning agents sends transportation requests from a GUI,
and recieves dynamical notification regarding the status of each
transportation request, such that it is possible to replan, when
deviations from the schedule plans occur or the plans are not
possible to satisfy.

– a coordination agent which is reactive in the sence that when
new requests are received it delegates the task to best biding
KAMAG vehicle agent, proactive in the sence that it makes a lo-
gistic plan, that describes what KAMAG vehicle agent that will
perform a given transportation request and when. Thus the lo-
gistic plan is a coordination of requests and resources(vehicles).

– a KAMAG vehicle agent, that is reactive in the sence that it dy-
namically changes its route if it perceives an obstacle on its route.
It is proactive in the sence that it plans the sequence of a trans-
port, regarding calculating an entire route from one location to
another, and when to load/unload ship blocks. Furthermore it
calculates when to start driving in order to reach its arrival des-
tination at a deadline. The KAMAG vehicle agent can accept or
deny a transportation request, depending on its status, schedule
and its location2 at the start time of a transportation request.

• Environment: We have proposed a solution based on a graph(which
is tightly coupled to the designed AutoMod path movement system),
where nodes represent locations a KAMAG vehicle can drive to. Nodes
are placed in each storage location, at every hall, and furthermore
on every road intersection. Edges in the graph represent roads with
distances, which are the real world distances, obtained from the de-
signed AutoMod path movement system. Each node can contain a
KAMAG vehicle and/or a ship block, which is useful when KAMAG
vehicle agents perceives their environment.

• Interaction: We have described that interaction between agents in a
multi-agent system is highly dependent of the MAS framework being
used, hence interaction must be adressed according to the used MAS
framework.

2The location it will be at the time that it should start execution the task

116 CHAPTER 9. SOLUTION STRATEGIES

• Organization: We have proposed a possible solution for organiz-
ing the agents into three types; planners(C-planners), coordinators(D-
planners) and KAMAG vehicle agents(KAMAG vehicle drivers), where
the coordinator receives transportation request from planners, and
delegates those to KAMAG vehicle agents. By using this organiza-
tion, we have preserved the hierarchical organizational structure at
OSS.

To avoid collisions with other KVAs we proposed a solution strategy, based
on agent perception and negotiation, more specifically a perception based
on using a MST3 combined with the graph(the environment), making a
KVA able to detect other KVAs within its perception. When other KVAs
are detected they should socialized and use the following strategy to avoid
collisions:

1. Socialize: has the following sequence:

(a) exchange route plans

(b) check if routes intersect. If yes then negotiate, else stop socializ-
ing

2. Negotiate: has the following sequence:

(a) calculate route to the nearest free temporary location that is not
in the other KVAs route

(b) compare transport priority and act accordingly:

• different priority: The KVA with the lowest priority moves
to its temporary location.

• same priority: The KVA with the shortest path to the tempo-
rary location moves to that location.

3Minimum Spanning Tree

Chapter 10

Simulation Model

This chapter will describe the functional requirements to the simula-
tion model and how we have designed our simulation model with
AutoMod, as seen in figure 10.1, in order to fulfill those require-

ments. We will only cover a sub-part of AutoMod, which concerns the ele-
ments necessary to make a model of the OSS problem domain. Every step
in designing the model will be explained, such that it should be possible
for other students to make a similar model in AutoMod, which fulfills their
requirements.

First we will list the functional requirements to the model and then explain
which elements are typically involved in an AutoMod model, and finally
give details regarding what elements to use in AutoMod in order to model
the OSS problem domain, which is a sub part of AutoMod’s functionality.
Next we will explain how to decide, what elements to place where, for
instance, how we decide to place a certain storage location in our model
and how buildings are modeled.

10.1 Functional requirements

We have the following functional requirements to the simulation model:

1. Create ship block : It should be possible to create new ship blocks in
order to simulate the production of new steel section, and the arrival
of ship blocks from other countries.

2. Remove ship block : It should be possible to remove ship blocks from
the system to simulate when a block leaves the system (from the dock)
or when a ship block have been incorrectly created.

3. Storage of ship blocks : It should be possible to keep ship blocks at
storage locations.

117

118 CHAPTER 10. SIMULATION MODEL

Figure 10.1: The final Simulation Model of the OSS domain. Storage loca-
tions, buildings, KAMAG vehicle and shipblocks are modelled.

4. Road system : It should be possible to model to road system.

5. Transport ship block : It should be possible to transport a ship block
from one location to another location. This requirement will be fur-
ther divided into sub requirements:

(a) drive to destination: drive vehicle to a location - with or without
a ship block.

(b) pick up: It should be possible for a vehicle with the same location
as a given ship block, to pick up that ship block

(c) drop down: It should be possible for a vehicle at a given location,
carrying a ship block, to place that ship block at that location.

6. External control : It should be possible to control the simulation
model with an external system.

10.2 Elements in a manufacturing system

There exist two types of elements in a manufacturing system: permanent
elements such as people, machines, buildings and material handling sys-

10.3. MODELING THE PHYSICAL ELEMENTS 119

tems, and temporary elements that are manufactured, processed and later
removed from the system, which are products that move through a system.
Both types of elements can be modeled with AutoMod [45].

In an AutoMod model, permanent elements such as machines, people and
buildings (such as painting halls) performing work on a product, are called
resources; a robot is examples of a machine which can be modeled as a re-
source.

Temporary elements, are products which travel through the system, thus
requiring a movement system in an AutoMod model; examples of avail-
able movement systems in AutoMod are: path mover systems, conveyors,
Automated Storage and Retrieval Systems (AS/RS), power & free systems,
bridge crane systems, tanks and pipes systems, and kinematics. The men-
tioned movement systems have the flexibility to simulate many real world
systems such as baggage transportation systems in airports using convey-
ors.

10.3 Modeling the physical elements

This sub section will concern how to model the physical elements at OSS in
AutoMod. We will explain how to model the following elements:

• Ship blocks

• Storage locations

• Buildings

• The road1 system

• KAMAG vehicles

10.3.1 Ship Blocks Design

The ship blocks at the shipyard move through the system, and are thus tem-
porary elements in our simulation model. Ship blocks are either delivered
from subsuppliers or manufactured at the ship yard, at various locations
and buildings, and are processed multiple places, thus these products are
modeled with “loads” in AutoMod.

Physical entities that move through a system, are represented by loads in
AutoMod. These loads are temporary elements, which are the active entity

1the word path and road refers to the same entity

120 CHAPTER 10. SIMULATION MODEL

Attribute/ Load L_block L_dummy
blockNo

√

blockWeight
√

blockHeight
√

blockLength
√

blockBreadth
√

grandBlockNo
√

putDown
√

pickUp
√

blockFamily
√

transportTo
√

transportFrom
√

transportNext
√

kamagPtr
√

eventTime
√

waitInterval
√

dropToProcess
√

Table 10.1: Load attributes

in the AutoMod software, thus they cause events to happen, and executes
logic. The logic in AutoMod, is written as instructions for the loads to fol-
low, while traveling through the system.

After loads are created, they move logically from one process to another, ex-
ecuting actions for the process, which are contained in arriving procedures.
When loads are ready to leave the system, they are sent to die, meaning
they disappear from the simulation. Each load has a user-defined descrip-
tion called a load type.

All loads have the same attributes in AutoMod, meaning that even though
we have different load types with distinct properties, every load in the Au-
toMod model have the same attributes. Table 10.1 lists the load attributes.
The load type L_dummy is used to control a vehicle and to generate time
events(see section 14.1.3), and the L_block is used the represent a ship block
in the system.

Every physical element that should be visualized requires some graphics to
represent the element in the simulation. We have designed a general graph-
ics cube in ACE to represent a ship block with the following dimensions:

• width = 1 meter

• length = 1 meter

10.3. MODELING THE PHYSICAL ELEMENTS 121

• height = 1 meter

When loads are created in the system, we scale the load graphics according
to its real dimensions, which are read from a database. Figure 10.2 shows
how the block frame is designed in ACE, figure 10.3 shows the general ship
block in color.

Figure 10.2: Design of a ship block
frame in ACE

Figure 10.3: The ship block in
color

The build windows in ACE, shows which ACE elements compose the graph-
ics, as seen in figure 10.4 we have a set with a box, and the dimension is set
to 1x1x1 m3.

Figure 10.4: ACE Build Window for a ship block

122 CHAPTER 10. SIMULATION MODEL

10.3.2 Buildings

Designing the graphics of the buildings at the shipyard can be a bit tricky;
first of all, graphics in AutoMod are designed with the program ACE. ACE
is a graphic editor provided with AutoMod for representing entities in an
AutoMod model. Graphics for entities such as vehicles, loads, kinematic
machines, buildings and all sorts of elements can be designed with ACE.

Buildings are permanent elements in the simulation, which are often used
to produce ship blocks, equip ship blocks, or to paint them, thus we can use
an AutoMod queue to represent a building. The graphics for every building
are designed with ACE, by using multiple sets, we can make things like
the building walls, the roof and windows. If we look at figure 10.5, 10.6
and 10.7 we see how the building called “HAL SYD” have been designed.
Figure 10.7 shows the two sets “HAL SYD” is composed of. Figure 10.5
shows the design of the building called “HAL SYD” at OSS.

Figure 10.5: Design of Building
Frame

Figure 10.6: Design of Building in
Color

As seen from the build window in figure 10.7, graphics of a building con-
sists of multiple elements; a set can contain multiple objects, such as other
sets and actually visible objects such as a box and a trapezoid, which are
two elements we have generally used for designing the buildings at the
shipyard.

By using aerial photographs we are able to estimate the heights of the vari-
ous buildings, so that our model of the shipyard appears similarly to reality.

Example of an aerial photograph of OSS at figure 10.8 and the correspond-
ing simulation design at figure 10.9.

10.3. MODELING THE PHYSICAL ELEMENTS 123

Figure 10.7: Build Window in ACE

Figure 10.8: Aerial Photograph of
OSS

Figure 10.9: Simulation Design of
OSS

10.3.3 The road system

In order to model the road system at OSS in the simulation, we can use
the AutoMod path movement system. The movement system includes dif-
ferent components, we can choose to simulate the transportation of loads,
such as:

• Conveyor Systems

• Power & Free Systems

• Tanks & Pipes

• Path Mover Systems

We have chosen the path mover system, which we find most suitable, since
the path simulates the road system at which vehicles can travel, like KA-

124 CHAPTER 10. SIMULATION MODEL

MAG vehicles driving at the road system at OSS.

When we have placed all the queues (see section G.8), we construct the
path mover system, at which the KAMAG vehicles will transport the ship
blocks. Again we create a new system, as with the static system, but this
time we choose “Path Mover” instead and we shall name this system “pm”.
Start by drawing lines as in figure 10.11 using the “Single Line” from the
path mover menu at figure 10.10. After designing the road system the lines
should be connected, for which we can use “Fillet” from the path mover
menu. When finished connecting all lines in the system, we place the con-
trol points. Control points determine from where vehicles can hold, thus
vehicles basically travel from one control point to another. A good idea is
to place control points for every road intersection, giving the vehicle ulti-
mate control to decide where to drive from and to. We have also placed
control points at the center of every queue, so the vehicle can stop at the
queue center, to drop and pick up loads.

Figure 10.10:
Path Mover
Menu

Figure 10.11: Draw the roads as lines

10.4. MODELING THE VIRTUAL CONTROL 125

Figure 10.12: Road system design of OSS

10.4 Modeling the virtual control

The logic in AutoMod is placed in processes and functions. Processes are
used as the virtual control of the load flow in the system. For every queue in
the system we have a process handling the flow of that specific queue. Also
KAMAG vehicles have individual processes that control the vehicle behav-
ior. AutoMod have been designed for production engineers, thus normally
we are supposed to write logic, that handles a load flow from start to end
in the system. But in our case, we do not know the system flow of the loads,
because we are designing an external system that is controlling the flow in
the system.

In this section we describe the processes that control queues and vehicles,
since they are essential in the system. We will also explain the processes
and functions used to communicate with and control the simulation model
externally.

10.4.1 Controlling KAMAG vehicles

Figure 10.13 shows the flow of a load in the process of KAMAG vehicle
4843, but the process is similar for the other KAMAG vehicles. We have
two types of loads in the system; a dummy load “L_dummy” and a ship
block load “L_block”. Dummy loads are placed on KAMAG vehicles when
they are instructed to drive to a location in the simulation at runtime, be-

126 CHAPTER 10. SIMULATION MODEL

cause a vehicle in AutoMod can not travel without carrying a load, because
all logic concerns the load, which means that we have to place a dummy
load on the vehicle we want to control, and write some logic for this load.

When we want to force a vehicle in a simulation to move, we place a dummy
load on it, and set the load attribute “transportNext” to the destination of
the vehicle. The vehicle travels to the next location, and the dummy load is
send to die, meaning that it is removed from the model (see figure 10.13).

When a KAMAG vehicle is carrying a load it will check the attribute “trans-
portNext”of load “L_block” to see if it needs to travel. If the transportNext
attribute is set, we check to see if the next location equals the KAMAG vehi-
cles current location, if this is not the case, the vehicle will travel to the next
location and call a procedure “F_arrivedToDestination” that will generate
an event notifying the external system that the vehicle has reached its des-
tination, else we check to see if the load attribute “putDown” is set, if this
is the case, the KAMAG vehicle is in the queue, where it should place the
load. We then generate an event regarding placing the load in the queue,
and the load is send to the process, which controls the queue and the load
is visually placed in the queue.

Figure 10.13: Process P_kamag4843

10.4. MODELING THE VIRTUAL CONTROL 127

10.4.2 Controlling queues

When a load is placed in a queue in AutoMod it will not automatically stay
in that queue unless we instruct it to, which makes it necessary constantly
to send the load back in the queue as seen in figure 10.14. Every queue has
a process that contains the queue logic. When a load is sendt to a queue
process, the process will place the load in its corresponding queue. Unless
a vehicle arrives at the queue, and the queue has been instructed, that it
should be picked up by that vehicle, the process will send the load to itself.
In the other case, if a vehicle has arrived at the queue to pick up the load,
the load will be send to a KAMAG manager process, which will forward
the load to the vehicle residen in the queue.

Figure 10.14: Process P_V122

10.4.3 External access to simulation model

In order to communicate with and control the simulation from an external
system, it is necessary design and implement processes and functions for
this purpose. It has been quite difficult and comprehensive to get access to
get generic access to all our processes and functions from the outside of the
simulation model, thus this task required several hacks in the coding. In
order to get hold on the various pointers in the simulation model we have
designed the following functions:

128 CHAPTER 10. SIMULATION MODEL

• F_getQueuePtrFromLoc : This function takes a location pointer as in-
put, and returns the queue, wherein the location resides.

• F_getProcessPtrFromLoc : This function takes a location pointer as
input and returns the corresponding process pointer, which means
the process controlling the queue, wherein the location resides.

It is not possible from within AutoMod to get in hold of a pointer, sim-
ply by knowing its name, i.e. the pointer VPPtr_V122, which is pointing at
the process P_V122, is not accessible from AutoMod simply by knowing
the name “VPPtr_V122” from AutoMod, but instead it is odd enough ac-
cessible from the outside of AutoMod, meaning the ActiveX object created
in the Middleware, thus when we need to get in touch with a pointer to
a location, queue or process, it is necessary to go trough the middleware
strangely enough.

As seen in figure 10.13, we call the function F_getProcessPtrFromLoc from
the corresponding KAMAG process, when a KAMAG has reached its des-
tination(control point) and must place the load it is carrying at a storage lo-
cation, because the KAMAG process needs to know which process controls
that storage location, so the load can be send to the correct next process.
The function F_getProcessPtrFromLoc is called with a control point as ar-
gument, and returns a pointer to the process controlling the queue, which
is placed at the control point. Yes, it indeed seems messy, but since Auto-
Mod do not provide data structures like hashtables to retrieve pointer from
string names (mapping), this is the approach we have decided to use.

10.5 Placing the physical elements

We have now designed the different elements in our simulation model,
and it is now time to unite all the elements, such as queues, buildings,
ship blocks, KAMAG vehicles, and virtual controlling elements, into one
complete AutoMod simulation model. With AutoMod we can scale every
building after real world scale, thus we have received an dxf file from OSS
with a complete overview of the shipyard, including every storage loca-
tion, building and the road system. Figure 10.15 shows the CAD file opened
with AutoCad, where the red lines indicate storage locations, the gray areas
with grey dot-and-dash lines indicate buildings, and the roads are black(no
color)limited at both sides.

AutoMod can read this file as a background image, we then started by plac-
ing each queue (buildings and storage locations), and scaling the queue2 to

2See appendix G.8

10.5. PLACING THE PHYSICAL ELEMENTS 129

Figure 10.15: Autocad file gives overview of OSS

it fits precisely, thereby making a simulation model, which is a precise mea-
sure of the real world shipyard.

We create a new system, by selecting “System” in the AutoMod file system,
then select “New” and select “static” system as seen in figure 10.16, and
give the system a name, i.e. “layout”.

Figure 10.16: Create a new system Figure 10.17: Menu
in a static system

130 CHAPTER 10. SIMULATION MODEL

A new menu will appear after creating a static system, as seen in figure
10.17, choose “Edit Graphic”, and the choose “import” as seen in figure
10.18, and AutoMod will start to import the file as a static system.

Figure 10.18: Edit Object Graphics

After the file has been imported, choose the measure system as seen in fig-
ure 10.19. You can translate, rotate and scale the image as you prefer. We do
not need to scale our image, because OSS already uses the correct scaling
values in the image.

Figure 10.19: Choosing picture unit

Now we have a static system with OSS as a background as seen in figure
10.20. We will place a queue for every storage location, and for every build-
ing. Every queue will have the same graphics with only the scaling varying
to fit the static system. Each building has been given an individual design
see section 10.3.2.

10.6. COMMUNICATION 131

Figure 10.20: Static System with OSS

10.6 Communication

In order to control the simulation model, it is necessary to implement some
form of communication in the simulation model. There are two possibil-
ities to communicate with AutoMod, which are sockets or ActiveX. As
described earlier we have chosen ActiveX as communication interface be-
tween the simulation model and the middleware.

The AutoMod simulation environment can be accessed with the use of Ac-
tiveX. This is done via the AutoMod runtime object which can be used as
an ordinary object in the programming languages which support ActiveX,
as for example Visual Basic or C#. An overview of the ActiveX component
in AutoMod can be seen in figure 10.21.

The methods, properties, events and their description can be seen in table
10.2,10.3 and 10.4 respectively.

The syntax for each method, with parameters and return values can be seen
in appendix H.

132 CHAPTER 10. SIMULATION MODEL

Method Description
CallFunction Calls a user-defined AutoMod function in the model during a

simulation.
GetVariable Gets the current value of an AutoMod variable in the

simulation.
SetVariable Sets the current value of an AutoMod variable in the

simulation.
OpenModel Opens an AutoMod simulation model, which is an AutoMod

compiled .exe file.
CloseModel Closes the opened simulation model
DisplayView Changes the view in the simulation
OpenLogFile Create a diagnostic file for debugging. The log file contains

diagnostic information that is generated during the
simulation; it is useful for debugging errors associated with
the custom interface.

Table 10.2: AutoMod ActiveX methods and their description

Property Read Only Description
Animating No Turns model animation on or off.
CurrentClock Yes Gets the current value of the simulation clock.
DisplayStep No Changes the simulation’s animation step (that

is, the length of the interval between
animation updates

Paused No Pauses or continues the simulation.
State Yes Determines the current state of the simulation.

Table 10.3: AutoMod ActiveX properties and their description

Events Description
OnModelReady Used to determine when the simulation is loaded and

ready to run.
OnStateChange Used to determine when state changes occur in the

simulation (for example, when the simulation is paused,
starts running, or completes).

OnUserEvent Used to send information from AutoMod to the
middleware. The event is generated whenever the
FireUserEvent function is called in the AutoMod
simulation.

Table 10.4: AutoMod ActiveX events and their description

10.6. COMMUNICATION 133

Figure 10.21: ActiveX Overview

Chapter 11

DECAF

In this chapter we will design the Multi-Agent System by the use of the
DECAF framework. With this design will try to fulfill the requirements
in section 2.4.

We will first identify the agents that are needed. Afterwards we will define
their capabilities in the form of which actions they can perform to solve
a particular task. The agents capabilities are defined with the help of the
DECAF graphical plan editor.

11.1 Agents

From the constraints and overall requirements we identify following agents,
which we will model in DECAF:

• C-planners

• D-planner

• KAMAG vehicles

Besides these agents we identify following agents:

• Init Agent: Initializes the multi-agent system and the simulation model,
by placing ship blocks and KAMAG vehicles at initial locations at sys-
tem start.

• Communication Agent: Handles all agent requests to the simulation
model, as well as simulation responses to the multi-agent system.

11.2 Agent Capabilities

We will now discuss each agent with it’s capabilities.

134

11.2. AGENT CAPABILITIES 135

11.2.1 C-planner

The C-planner agent consists of an Input GUI, where the C-planner can en-
ter the transportations he need during the day. This GUI is shown in figure
11.1. The C-planner can request transportations from the D-planner, which
then coordinates the transportations and makes a daily transportation plan.
When the D-planner has coordinated the requests, each C-planner will get
the part of coordinated plan with their requests back. These responses from
the D-planner can be seen in the Monitor GUI. If a C-planner is unhappy
with the coordinated request, he will be able to make a modification re-
quest by the use of the Monitor GUI.

Figure 11.1: C-planner Input GUI

The tasks that the C-planner agent can perform can be seen in figure 11.2.
A description of each task is given in table 11.1.

136 CHAPTER 11. DECAF

Figure 11.2: The Tasks and Actions that the C-planner can achieve

Task Description
_Startup The _Startup task is a standard task in the DECAF

architecture, which is run only once, that is when the agent
starts [27, section 5.2.1]. For the C-planner Agent this task
will create an Input GUI like the one shown in figure 11.1
and a Monitor GUI.

CPlanner_ReserveTransports The ReserveTransports task is run, whenever the C-planner
presses on the send button in the input GUI. This task will
then receive the requested transportations from the input
GUI, which is placed in the parameter args (see the green
box in figure 11.2). The reserveTransports action will then
create a KQML message with the appropriate syntax
whereupon the request message will be sent to the
D-planner.

CPlanner_tell This task is run whenever the D-planner responds back to
the C-planner requests. This task will update the Monitor
GUI of the C-planner.

CPlanner_ModifyTransports If the C-planner is unhappy with the coordinated
transportation requests, then he is able to ask for
modifications from the D-planner with this task.

Table 11.1: C-planner Tasks

11.2. AGENT CAPABILITIES 137

11.2.2 D-Planner

The D-planner receives transportation requests from the C-planners. Co-
ordinates these requests into a daily transportation plan, in co-operation
with the KAMAG agents, by asking them about their drive plans and state.
To keep it simple, we have aggreed that the KAMAG agents can only han-
dle one transportation request at a time, that is a KAMAG can accept to
drive a transportation task and set its state to busy. After completion of the
transportation task, the KAMAG will set its state to free and accept another
transportation task from the D-planner.

The D-planner coordinates the transportation requests by ordering the re-
quests according to the starttime of the transportations. If two or more
transportation tasks have the same starttime, then the D-planner will sort
these tasks by their travel distance.The plan coordination will happen peri-
odically for every X minutes, that is the D-planner will be triggered for ev-
ery X minutes and calculate another plan, if there has come newer requests
since last trigger. The flow diagram for the coordination of the transporta-
tion tasks can be seen in figure 11.3

Figure 11.3: D-planner Coordination of Transportation Tasks

138 CHAPTER 11. DECAF

The tasks that the D-planner can execute can be seen in figure 11.5. The
description of the tasks can be seen in table 11.2. The last four tasks in this
table are used for coordination of the transportation tasks (flow diagram
can be seen in figure 11.3) and the task DPlanner_CollectCPlans is used by
the D-planner to collect C-planner transportation requests (flow diagram
can be seen in figure 11.4).

Figure 11.4: Flow diagram for collection of transportation request

Figure 11.5: The Tasks and Actions that the D-planner can achieve

11.2.3 KAMAG

The KAMAG agents are responsible to transport ship blocks from one lo-
cation to another. The KAMAG agents will be asked about their state and
location whenever there is a transportation request to be fulfilled. They will

11.2. AGENT CAPABILITIES 139

Task Description
_Startup
DPlanner_CollectCPlans This task is used to collect transportation

requests from the C-Planners. Whenever
a C-planner makes a transportation
request, this task will create a
“transporttask object”, with information
about the request. The “transporttask
object” will be placed in a collection of
requests to be handled by the D-Planner.
The collection of requests are sorted first
by the pickuptime; if there are equal
pickup times then sorted by transport
distance.

DPlanner_DistributeTransports This task is called periodically and checks
whether there are unhandled
transportation requests. If so, this task
will use the next two tasks in this table
for;

1. send KQML messages to all
KAMAG agents, asking their state
(free/busy) and location

2. Check answers from KAMAG
agents about their state and
location, then choose the best
suited KAMAG for the
transportation task.

DPlanner_DistributeTransport This task is run by the
DPlanner_DistributeTransports task to
send one KQML message to a specific
KAMAG, asking for its state and location.

DPlanner_CheckCFPanswers This task is also run by the
DPlanner_DistributeTransports task and
has the responsibility of checking all
responses from the KAMAG agents about
their state and location, and choose the
best suited KAMAG for the
transportation task

DPlanner_tell Whenever a KAMAG receives a request
about its state and location, it will send
these informations to the D-planner. The
D-planner will receive this information
with this task.

Table 11.2: D-planner Tasks

140 CHAPTER 11. DECAF

answer the D-planner, whereupon the best suited KAMAG will get a re-
sponse from the D-planner to fulfill the transportation request, with infor-
mation about where to pickup/putdown the ship block, and what time to
pick it up(pickuptime p). The chosen KAMAG agent will then sets its state
to busy, calculate the travel time t from its current location to the pickup lo-
cation and wait. When the time becomes p-t, the KAMAG agent will drive
to pick the ship block up, transport it to the destination location, put it
down and set its state to free.
So a KAMAG agent has two tasks

1. Respond, when asked, to the D-planner about the current state and
location

2. Receive a transportation task and fulfill it.

The flow of these can be seen in figure 11.6 and 11.7.

Figure 11.6: KAMAG task flow 1 Figure 11.7: KAMAG task flow 2

11.2.4 Init Agent

The init agent consists of a GUI to input initial placements of ship blocks
and KAMAG agents at the OSS into the multi-agent system and simulation
when the system starts. The Init agent has only two tasks which can be seen
in figure 11.9. A description of these tasks are given in table 11.3

11.2. AGENT CAPABILITIES 141

Figure 11.8: The Tasks and Actions that the KAMAG can achieve

Figure 11.9: The Tasks and Actions that the Init Agent can achieve

11.2.5 Communication Agent

The Communication agent handles all agent requests to the simulation
model, as well as simulation responses to the multi-agent system. The tasks
and actions that the communication agent can achieve can be seen in figure
11.11. A description of these tasks are given in table 11.4 (the first part of
the task names “CommAgent” are not shown in the table to give room for
the description field). The type column indicates:

142 CHAPTER 11. DECAF

Task Description
_Startup This task initializes the input GUI, which

can be seen in figure 11.10
InitAgent_PlaceBlocksKamags This task is used by the input GUI to

insert data of the initial placements of the
ship blocks and KAMAG vehicles into the
multi-agent system and simulation.

Table 11.3: Init Agent Tasks

Figure 11.10: The GUI for the init agent

• req = This task request’s to make an execution happen in the simula-
tion

• res = This task handles a response from the simulation, because there
has occured a specific event in the simulation.

11.2. AGENT CAPABILITIES 143

Task Type Description
_Startup Initializes a collection that will contain

times and each time will be connected
with one or more agents. For each of the
times the simulation will respond back
to the connected agents, when the time
has been reached.

_DriveToLocation req This task can be achieved by a KAMAG
agent to drive to a location in the
simulation.

_PickUpBlock req This task is achieved by a KAMAG
agent to pick up a ship block in the
simulation

_PutDownBlock req This task is achieved by a KAMAG
agent to put down a ship block in the
simulation

_AddRequestTimeEvent req This task is achieved by a KAMAG
agent to make the simulation notify the
KAMAG agent when a specific time has
been reached in the simulation

_PlaceBlocksKamags req This task is achieved by the Init Agent to
initialize the simulation model by
placing ship blocks and KAMAG
vehicles to initial locations in the
simulation.

_ArrivedToDestination res This task notifies a KAMAG agent,
when the KAMAG has arrived to a
destination in the simulation

_BlockPickedUp res This task notifies a KAMAG agent,
when the KAMAG has picked up a ship
block in the simulation

_BlockDroppedDown res This task notifies a KAMAG agent,
when the KAMAG has dropped down a
ship block in the simulation

_TimeEventGenerated res This task notifies an agent, which has
requested to be notified when a specific
time has been reached in the simulation

Table 11.4: Communication Agent Tasks

144 CHAPTER 11. DECAF

Figure 11.11: The Tasks and Actions that the Communication Agent can
achieve

Chapter 12

Cougaar

This chapter briefly presents the Cougaar framework and the Cougaar
methology, from where the multi-agents system have been designed.

In this chapter we will use the “Cougaar Design Methodology” [20], to
map the OSS domain and the set of business processes onto the Cougaar
concept. The workflow can be seen in figure 12.2.

12.1 A brief overview of the Cougaar framework

The agent capabilities and behaviours are defined by the plugins in the
agent [20]. Organized agents are called communities in Cougaar, meaning
that agents that have a common functional purpose can be grouped into
communities. In general, agents that reside in the same community will
have the same role, and some agents might be associated with more than
one community, while other agents may not be related to any community.
A society in Cougaar is a collection of agents that must interact in order
to solve an overall common objective. The collection of all communities/a-
gents is referred to as the society. The behavior of a Cougaar society is the
aggregate emergent behavior of all the agents in the society cooperatively
working on a set of requirements.

The Cougaar framework is based on a publish/subscribe pattern, where
every plugin in an agent communicates by publishing and subscribing ob-
jects to a common blackboard. Every agent has its own blackboard whereto
it can publish and subscribe information. A plugin has no knowledge re-
garding who subscribes/publishes what.

When agents are organized into communities, communities must have a
relationship in order to interact. There are two common types of relation-
ships, which are predefined relationships in a so called organizational as-
sets, that are either based in the customer/provider relationship or the su-

145

146 CHAPTER 12. COUGAAR

perior/subordinate. When dealing with a system that typical processes a
few long term tasks which spans over several days, week or months the su-
perior/subordinate relationship is preferred, while the customer/provider
relationship is preferred when dealing with many short term tasks like
transport tasks for example. An example of a Cougaar agent is seen in fig-
ure 12.1.

The interacting between agents in different societies are conducted using
so called PlanElements, which contain a task

Figure 12.1: Cougaar Agents is composed of plugins. The Plugin sub-
scribes/publishes to a common agent blackboard

12.2 Cougaar Methology

The Cougaar framework proposes a methology for designing a multi-agent
system with Cougaar. We intend to follow this methology which can seen
in figure 12.2.

12.3 Agent Enumeration

In the transportation problem at OSS, we have a number of choices for
breaking the problem down into Agents, as discussed in section 9.1. There
is one company: we could model everything in one Agent. There are in fact
several players, but it seems that there are three fundamental groups who
play a role here: planners (C-planners), schedule coordinators (D-planners,
usually only one at a time) and Kamag vehicle drivers. They have their
own assets, such as people(workers), machines and vehicles and their own
business processes, and by joining them into one agent we would lose the
natural decomposition, and by breaking them down further we would in-
crease network traffic to coorporate among the groups.

12.3. AGENT ENUMERATION 147

Figure 12.2: Cougaar Design Methodology Workflow

The agents in the system can be determined by the fundamental actors,
whose behaviors and interactions we wish to model in the system, which
include the following at OSS:

• C-planners: request several transportations from the D-planner on
daily basis.

• D-planner: generates an overall transportation schedule and provides
this to the C-planners. Delegates transportation tasks to kamag vehi-
cle drivers.

• Kamag vehicle drivers: transports ship blocks between locations

Which leads to the following agents in the system, as seen in figure 12.3:

• Planner Agents: Generates transportation requests and sends them
to Coordinators.

• Coordinator Agents: Receives transportation requests from planners,
coordinates theese transportation requests into an overall schedule
and delegates transportation tasks to Kamag Vehicles. Then sends up-
dated schedules back to planners.

• Kamag Vehicle Agents: Receives transportation task, gives etimates
on task completion time and reports when tasks are completed.

148 CHAPTER 12. COUGAAR

Figure 12.3: Agent enumeration

12.4 Role/Relationship Analysis

In this section we describe the roles and relationships among the agents.

12.4.1 Kamag Vehicle Agent

A KVA provides a transportation service to a coordinator agent, and more
specifically to pick up a ship block at a given location on a deadline and
deliver the ship block to a specified location. A KVA has a plan of reserva-
tions, thus when a request is received it checks if it is possible to perform
the task, and reports back. The KVA has a TransportProvider role.

12.4.2 Coordinater Agent

The CA provides a coordination service for planner agents, more specif-
ically it receives transportation reqeuests from PAs, coordinates them and
delegates transportations to kamag vehicle agents. The CA has a Transport-
Coordinator role.

12.4.3 Planner Agent

The PA do not provide any service to other agents, it subscribes to a coor-
dination service from the coordinater agent, by publishing transportation
requests and expecting them to be coordinated and to get a time estimate
on when tasks are expected to be completed, and get a report if a request is
not possible to satisfy. The PA has a TransportPlanner role.

12.5. PLUGIN ENUMERATION 149

Agent Role/Relationship
PA TransportPlanner/(No services provided: customer of CA)
PA TransportCoordinator/Provides a task coordination service for PA,

and is customer of KVA)
KVA TransportProvider/Provides a transportation service for CA)

Table 12.1: Role/relationship overview

1. PAs are customers of CAs, and the CAs
(typically only one) are the providers to
the PAs.

2. CAs are customers of the KVAs, and the
KVAs are providers to CAs.

12.5 Plugin Enumeration

In this section we compose agents into plugins, which together makes the
agent behavior. The plugin enumeration is inspired from the real world,
mapping human behavior into agents, where humans involve several strate-
gies over and over, to solve a particular problem. These strategies can be
categorized as follows [20]:

1. Gathering information(LDM template), which concerns reading new
and changed information from external data sources.

2. Delegating (Allocator template), meaning allocating tasks to appro-
priate resources for final handling or further disposition.

3. Monitoring(Assessor template), concerning assessing the plan for in-
ternal consistency and force replanning when necessary.

150 CHAPTER 12. COUGAAR

4. Reporting(UI template), which concerns reporting information back
to users of the system.

The plugins are enumerated and described in their cooresponding agents.

Planner Agent

The planner agent delegates transportation requests for further disposition,
and monitors the plan for internal consistency and forces replanning when
necessary. The Cougaar framework proposes the following plugin types
to satisfy those needs; an Allocator plugin for delegating task and an UI
plugin for reporting to the user, thus we have the following plugins:

sts PlannerGUI: Provides a GUI to the user, wherein a C-planner can de-
fine transportation requests and submit those to the system.

sts TransportRequestAllocator: subscribes to the transportation requests
and allocates those to the CA for further disposition.

sts AllocationAssessor: subsribes to TransportRequest Allocations (plan
elements), monitoring the status of allocations for consistency an mon-
itors that they are on schedule and publishes Reports.

sts MonitorGUI: Subscribes to Reports and visualize the status in a graph-
ical user interface. from TransportRequestAllocatorPlugin and moni-
tors that they are on schedule, and replans if necessary.

Coordinator Agent

The coordinator agent or TransportCoordinator, receives transport requests
from the TransportPlanner, which it organizes. When the transport requests
have been organized the TransportCoordinator requests bids from Trans-
portProviders, and will choose the best bid by using a scorefunction. When
the best bid have been chosen, a transport task will be created an delegated
to the TransportProvider with the best bid. The delegated transport tasks
are being monitored in order to replan in case of inconsistency in the plans.
The primary objective for this agent is to allocate resources(KVAs) for a
given transportaion task and try to have ship blocks collected within the
deadline.

sts TransportRequestManager: This plugin subscribes to TransportRequest
Allocations from the TransportPlanner, and organizes them(with re-
spect to deadline and priority). When a transport request allocation
is received this plugin calculates the expected duration of the trans-
portation, places this information in a BidRequest, which is then pub-
lished.

12.5. PLUGIN ENUMERATION 151

sts ProcessBidRequest: This plugin subscribes to BidRequests an allo-
cates BidRequest Allocations to Transportproviders:

sts BidManager: subscribes to BidRequest Allocations in order to mon-
itor the internal state of Bids for consistency, and force replanning
when needed. Its also subscribes to TransportProviders in order to
chaeck if it has received bids from all TransportProviders before score
calculation and publishes the BestBid. The BestBid is calculated with
a scorefunction.

sts ProcessBestBid: Subscribes to BestBid and publishes an Transport-
Task Allocation to the TransportProvider with the best bid.

sts TransportMonitorPlugin: subscribes to TransportTask Allocations and
TransportRequest Allocations, in order to monitor the state of the
TransportTask Allocations for internal consistency, checking to see
if they are on schedule. The decision regarding replanning of Trans-
portTasks are forwarded to a higher level. In order to perform this
action, the TransportMonitor must map TransportTask Allocations
to their corresponding TransportRequest Allocations and publish a
TransportRequest Allocation Result.

Kamag Vehicle Agent

The KVA is the worker agent, which performs all transportations of ship
blocks, and we will divide the behaviour of this agents into the following
plugins.

sts ProcessBidRequestPlugin: subscribes to BidRequest Allocations and
the Environment, checks its plan to see if it is capable of solving the
task, and calculates when it can be at the pick up location. This plugin
publishes RouteTimeRequests and BidRequest Allocation results.

sts BidMonitorPlugin: subscribes to BidRequest Allocations, monitors the
results, and checks if they violate the current schedule, publishes up-
dated BidRequest Allocation Results.

sts TransportTaskManagerPlugin: subscribes to TransportTask Allocations,
and publishes a Transport tasks.

sts TransportMonitor: subscribes TransportTask Allocations and checks
if they are on schedule. When status on a transportation changes, it
publishes a TransportTask Allocation Result.

sts EnvironmentLDMPlugin(Gathering): populates the blackboard with
the Environment, which is a graph representation of the OSS domain.

152 CHAPTER 12. COUGAAR

sts KamagLDMPlugin(Gathering): populates the blackboard with a Ka-
magAsset, representing the KAMAG vehicle with its physical prop-
erties, such as speed and maximum payload capacity.

sts PerceptionPlugin: Subscribes to the Environment object and RoutePlans.
This plugin publishes Perceptions, when ship blocks are detected in
the route, or when another KVA is detected.

sts VehicleControllerPI: This is the logic controlling a kamag vehicle. This
plugin subscribes to the following objects: KamagStatus, RoutePlans,
Perceptions and Environments objects. Furthermore this plugin sub-
scribes to TransportTask tasks used for allocating tasks to the Kama-
gAsset(Representing the physical vehicle) and requesting a RoutePlan
object. This plugin publishes RouteRequests and SimulationMessages
with orders like DRIVE_TO (some location), PICK_UP(a ship block)
and PUT_DOWN().

sts NegotiationPlugin: This plugin is used to resolve route intersection
conflicts between agents. This plugin subsribes the environment and
route plans, and allocates the agents route plans to a perceived agent.
They will negotiate to find out who has the lowest priority and the
shortes path. The agent with the lowest priority will move (publish-
ing a change to the route plan), or the the agent with the shortest path
to a free location will move in case of equal priority. The negotiating
plugin will publish a new route, and a simulation message, request-
ing the simulation model to generate an event after a certain duration,
whereafter the conflict will be resolved and the KVA can continue on
its route.

sts SimulationCommunication: This plugin serves to exhange data with
the simulation model. When it is created it registeres with a commu-
nication broker, that handles the mailbox of this plugin. This plugin
subscribes to SimulationMessages.

sts RoutePlannerPlugin: Det purpose of this plugin is to generate routes
from one location to another location. It subscribes to RouteRequest
and RouteTimeRequest, and publishes a RoutePlan or a RouteTimeRe-
port.

12.6 Publish/Subscribe Analysis

The purpose of the publish/subscribe analysis is to ensure that the plugins
in the various agents publish and subscribe consistent sets of objects. We
conduct this analysis by creating a table as the one shown in table 12.3.

12.6. PUBLISH/SUBSCRIBE ANALYSIS 153

We have now enumerated all plugins required in our OSS society:
Agent Plugin Function Template

Planner PlannerGUI Provide UI for the user to
create initial TransportRequest
tasks

UI-Plugin

TransportRequest- Allocator Allocate TransportRequest to
TransportCoordinator

Allocator

AllocationAssessor Monitors the status of
transportation requests for
consistency

Assessor

MonitorGUI Provide status of every
TransportRequest in a GUI

UI-Plugin

Coordinator TranportRequestManager Manage TransportRequest
from TransportPlanner,
publish BidRequest task

Expander

ProcessBidRequest Allocate BidRequest task to
TransportProvider

Allocator

BidManager monitor the state of all Bids,
publishing BestBid, when all
have replied

Assessor

ProcessBestBid Allocate TransportTask to
TransportProvider

Allocator

TransportMonitor checks transportations for
consistency. Publish
TransportRequest Allocation
Result

Assessor

Kamag Vehicle ProcessBidRequest Processes BidRequests from
TransportCoordinator

Expander

BidMonitor checks bids for consistency Assessor
TransportTask- Manager Create TransportTask tasks Expander
TransportMonitor checks transportations for

consistency
Assessor

EnvironmentLDM Create Environment LDM
KamagLDM Create KamagAsset LDM
Perception perceives the environment. Custom
VehicleController Allocate TransportTask to local

asset
Allocator

Simulation- Communication Exchange data with the
simulation model

Custom

RoutePlanner calculate shortest path
between two locations

Custom

Table 12.2: Plugins required in the OSS society

154 CHAPTER 12. COUGAAR

By means of this table, it is clear that we have no overlabs or gabs in the
coverage of publishes and subscribes between plugins in any agent.

12.7 Task Grammer

In this step, we detail the content of the tasks produced and consumed by
the various plugins.

Figure 12.4: Deadline scoring function : “At 10:00”

All tasks has the same type of direct object (content of the task), since it
essentially is the same task in different wrapping. Thus the TransportAsset
must be able to contain all information necessary to process the task. Note
that all preferences have an START_DATE, which contains the start time or
deadline of a task. When coordinating the tasks the coordinator uses the
score function shown in figure 12.4. The score function makes it possible to
reason about bids from KVAs, thus when coordinating tasks, the ones with
the highest priority will automatically have an larger score function value,
than tasks with lower ones, thus securing that tasks that are most urgent
has the highest priority when coordinating tasks.

12.8 Plan Element Map

In this section we lay out map of the different PlanElements in the various
agents, to see how incoming tasks are utimately handled. Figure 12.5 re-
flects how incomming tasks are handled in the PA. The PA publishes this
task, for every transportation request in the PlannerGUI, and allocates a
plan element to the organizational asset representing the entity with the
TransportCoordinator.

12.8. PLAN ELEMENT MAP 155

Agent Plugin Publishes Subscribes

Planner PlannerGUI TransportRequest
TransportRequest-
Allocator

Allocation
(TransportRequest)

TransportRequest

AllocationAssessor Report Allocation
(TransportRequest)

MonitorGUI Report

Coordinator TaskRequest- Manager BidRequest Allocation
(TaskRequest)

ProcessTransport-
Request

Allocation (BidRequest) BidRequest

BidManager BestBid Allocation (BidRequest)
ProcessBestBid Allocation

(TransportTask)
BestBid

TransportMonitor Allocation Result
(TransportRequest)

Allocation
(TransportTask)

Kamag Vehicle ProcessBidRequest RouteTimeRequest,
Allocation Result
(BidRequest)

Allocation
(BidRequest),
Environment object

BidMonitor Allocation Result
(BidRequest)

Allocation (BidRequest)

TransportTaskManager TransportTask tasks,
Allocate(TransportTask)
to local asset

Allocation
(TransportTask)

TransportMonitor Allocation Result
(TransportTask)

Allocation
(TransportTask)

EnvironmentLDM Environment object
KamagLDM KamagAsset
Perception Perception object Environment objects,

RoutePlan objects
VehicleController SimulationMessage

objects
TransportTask tasks,
KamagStatus objects,
RoutePlan objects,
Perception objects

Simulation-
Communication

KamagStatus objects SimulationMessage
objects

RoutePlanner RoutePlan objects,
RouteTimeReport
objects

RouteTimeRequest
objects, RouteRequest
objects

Table 12.3: Publish/subscribe analysis

Verb Direct Object prepositions Aspects/Preferences

TransportRequest TransportAsset START_DATE(10:00)

TaskRequest TransportAsset START_DATE(10:00)

BidRequest TransportAsset START_DATE(10:00)

Table 12.4: Task Grammar

156 CHAPTER 12. COUGAAR

Figure 12.5: Planelement Map for the PA

When the CA receives a BidRequest task or a TransportTask task (published
internally in the agent), it allocates the cooresponding plan element the or-
ganizational asset representing the entity with TransportProvider role.

When the KVA receives a TransportTask (published from within the agent)
then it allocates a planelement to its local KamagAsset, which represents
the physical KAMAG vehicle in the system.

12.8. PLAN ELEMENT MAP 157

Figure 12.6: Planelement Map for the CA

Figure 12.7: Planelement Map for the KVA

158 CHAPTER 12. COUGAAR

12.9 Asset/Propety Analysis

We will now state the assets and properties being used in the agents. We
will start by defining the properties:

• VehiclePG: A vehicle has a speed and a maximum speed.

• ContainerPG: A container has a payload and a maximum payload.

• TransportPG: A transport has a block number, a pick location, put
down location, a deadline, a priority, a duration, a status and a scorevalue.

• ShipBlockPG: A ship block has a block number(type identification), a
weight, a height, length, and a grandblock family.

Now we are ready to define the assets:

• KamagAsset: Represent a KAMAG vehicle, with container and vehi-
cle properties.

• TransportAsset: Represents a transportation request from a C-planner
including transport properties

• ControlPointAsset: represent a control point in the simulation model
or in the environment, thus it must have storage, supply, equipment,
paint and shipblock properties.

12.10 Execution Monitoring/Dynamic Replanning

So far we have discussed planning in a static way. If no requirements change
and every transportation task gets allocated the KVAs then there is no need
for replanning. The allocations between the agents in the society are shown
in figure 12.8. We will now describe the dynamics in the OSS society.

When a C-planner uses his GUI to request transportations he activates his
PA. The PA is a reactive agent, which do nothing more than pass transporta-
tion requests on to the organizational asset representing the CA. Viewing
the agent communication from an external view as the one in figure 12.8, it
is seen that the PA can replan, and the CA can replan.

The CA keeps track of the bids from any agent and replans if the bids
changes at some point, such that another KVA has a better score function
then the one the CA delegated the task to. Thus the task is removed from
the other agent.

12.11. NODE ANALYSIS 159

Figure 12.8: Dynamic replanning and execution monitoring

12.11 Node analysis

The node analysis is the last phase of the Cougaar Design Process, and this
section deals with the allocation of Agents into nodes. The process of di-
viding Agents into nodes has no impact on the internal Agent design, since
the agents are not aware of in which node they reside, and what agents are
co-resident with them in the same node.

Since all agents from the same node, share CPU, memory pool, disk and
compete for incoming and outgoing bandwidth traffic, agents which will
be in frequent or high bandwidth communication, should be candidates
for co-locating in the same node. Agents, which communication resolves in
a bandwidth bottleneck

We have a relatively small community, and have thus decided to dispose all
agents in the same node. The agents could have been placed in nodes cor-
responding to the geographical displacement of the human actors at OSS,
thus given every C-planner their own node, and placing the D-planner in a
centralized placed at OSS.

12.12 The final design

We have designed a multi-agent system with the Cougaar framework based
on the Cougaar Methology, in order to solve the logistic problem at OSS.
The final design includes a GUI (figure 12.10)for C-planners to order daily
transportations, and a GUI for monitoring the results and current status of
the transportations. The C-planner have an overview of which transporta-
tions are on schedule and which that have failed, meaning deviating to
much from the schedule. Based on this information the C-planner at OSS,
can replan the transportations that have failed, or change transportations

160 CHAPTER 12. COUGAAR

Figure 12.9: Node with Agents

that are still waiting for execution.

KAMAG vehicle agents are now reactive, and react on changes in the en-
vironment, which have been implemented with the graph shown in figure
9.4 from section 9.3, and a PerceptionPlugin in the agent, which notifies the
agent when ship blocks are perceived on its current route or when other
KAMAG vehicle agents are detected in its perception area.

Figure 12.10: Planner GUI

12.13. EVALUATION OF THE COUGAAR FRAMEWORK 161

Pros Cons
Very flexible, allowing given a great
degree of fredom for programmers

The Cougaar framework is to
complex and comprehensive for
designing simple multi-agent
systems, and for newbie
experimentation with the MAS
technology

Object oriented: the framework is
developed in Java and provides
plugins for Eclipse

the framework is asset oriented,
limiting the usage of functionality.
Some times it is just better to use an
object.

It is weel documented: BBN
Technologies provides a detailed
Cougaar Architecture document, and
Cougaar Development document

Table 12.5: Pros and Cons for the Cougaar framework

12.13 Evaluation of the Cougaar framework

The Cougaar is a very complex and comprehensive MAS frameworks, and
it shows that it has been developed over more than 8 years. There are a
lot of detailed documentation, such as the “Cougaar Architecture Docu-
ment”, and the “Cougaar Developers Guide” provided BBN Technologies,
and training tutorial at the cougaar community.

information is lacking, e.g. a more developer friendly explanation on how
to generate Asserts and property groups (PGs), since they are an important
part of the cougaar methology. We have explained how to generate assets
in section 14.4.1.

Chapter 13

Middleware

In this chapter we will discuss the design of the middleware. The com-
plete system that we are going built was shown in figure 6.3 in section
6.2. We will use a use-case driven design for the middleware and the

starting point for the design of the middleware application will be the user
who starts the middleware application. The state diagram for the user start-
ing the middleware application can be seen in figure 13.1.

Figure 13.1: State diagram for the Middleware Application

When the user has started the middleware he has to choose to one of
the following modes to use the middleware:

162

13.1. FEEDER MODE 163

• Feeder Mode: The user inputs actions to the simulation

• Socket Mode: The MAS sends actions to the simulation and receives
events from the simulation.

The GUI window for choosing the desired mode can be seen in figure
13.2

Figure 13.2: Middleware Mode Selection GUI Window

In the next sections these two modes will be described and designed.

13.1 Feeder Mode

The Feeder is used to input different kind of actions, which then can be
seen in the simulation model. The feeder is used by an human actor. The
use cases for the “User”can be seen in figure 13.3

Figure 13.3: Feeder Mode use cases for the User

164 CHAPTER 13. MIDDLEWARE

The Feeder has a GUI where the human actor (User) will be able to
execute his use-cases. This GUI can be seen in figure 13.4

Figure 13.4: Middleware Feeder Mode GUI Window

A short description of each use-case will be described next:

• Open Simulation Model: The user opens the simulation model by
selecting an Automod builded exe file, and opens it.

• Start Simulation Model: The simulation can be started with the “start
simulation” button, but only after the simulation model has been
opened.

• Pause Simulation Model: The simulation can be paused with “pause”
button, but only when the simulation has been started. The pause but-
ton is the same button as the start simulation button.

• Close Simulation Model: The user closes the simulation model by se-
lecting file on the menu-bar and then close simulation. The User can
the open a new simulation without restarting the middleware appli-
cation.

• Place Ship Block: The user can place a ship block into the simulation
by choosing a ship block no. and a location. The chosen ship block
will be placed into the simulation at the specified location, when the
user presses the “add ship block” button.

• Place Kamag: The user can place a KAMAG from in a location in the
simulation by choosing a KAMAG and a location. The chosen KA-
MAG will be placed when the user presses the “place kamag” button.

• Drive To Location: With this use case the user can choose a KAMAG
and a location. Then by pressing the “drive to” button, the KAMAG
will drive to the chosen location in the simulation.

13.2. SOCKET MODE 165

• Drop Ship Block: The user chooses a KAMAG and presses the “drop
block” button to drop down the ship block the chosen KAMAG car-
ries at the current location.

• Lift Ship Block: The user chooses a KAMAG and presses the “lift
block” button to lift up the ship block located at the current location
of the KAMAG.

• Exit: This use case will exit the Middleware application and close an
open simulation model as well.

13.2 Socket Mode

If the user chooses the Socket Mode (see figure 13.1) when the middleware
application has started, then the user will see the GUI window shown in
figure 13.5

Figure 13.5: Middleware Socket Mode GUI Window

The user can only open and close a simulation model and exit the mid-
dleware application with this GUI window. The uses cases for the user in
this mode are thus shown in figure 13.6

Figure 13.6: Socket Mode use cases

166 CHAPTER 13. MIDDLEWARE

In this mode the Middleware will receive actions from the MAS, and
therefore we can see MAS as an actor. In fact there will be an agent in the
MAS that will be the actor, acting upon the Middleware. This agent will be
called the Communication Agent (see multi-agent design chapter 11). This
agent will possess the use cases shown in figure 13.3 minus the use case
shown in figure 13.6, that is it will possess the use cases shown in figure
13.7. In fact this agent has a Monitor use case which is used by Communi-
cation agent to monitor all kind of activity in the simulation; e.g. when a
KAMAG arrives to a location or a KAMAG drops down a ship block and
etc. All this kind of events in the simulation environment will be monitored
by the Communication agent, which then will inform the corresponding
agent in the MAS. To give an example lets look at the case when a KAMAG
agent in the MAS drives from one location to another. A state diagram in
this case, for the Communication agent, can be seen in figure 13.8

Figure 13.7: Socket Mode use cases

In the first state diagram the Communication agent receives a request
“drive to location” from the KAMAG agent. The Communication agent will
then send the action “drive to location” to the middleware, which will acti-
vate the KAMAG vehicle in the simulation, where the vehicle will begin to
move.

The next state diagram shows the state diagram for the use case Moni-
tor. When the Communication agent starts it will enter the monitoring state,
and whenever one of the following events occurs in the simulation,

• A KAMAG vehicle arrives to a destination

• Ship block is dropped in a location by a KAMAG

• Ship block is lifted up from a location onto a KAMAG

13.2. SOCKET MODE 167

Figure 13.8: Drive to Location State diagram for Communication agent

• A MAS requested time has been reached.

the Communication agent will notify the concerning agents. In our example
the Communication agent will then notify the KAMAG agent, when the
KAMAG vehicle arrives to the destination in the simulation. The KAMAG
agent will then update its state accordingly.

Now lets take a look at the class diagram for the middleware in the next
section.

168 CHAPTER 13. MIDDLEWARE

13.3 Class Diagram

The class diagram for the middleware can be seen in figure 13.9.

Figure 13.9: Middleware Class Diagram

A short description of each class is given in tabel 13.1.
For further information about each class with its attributes and meth-

ods, please look at appendix I

13.3. CLASS DIAGRAM 169

Class Description
Program Contains the main method and is the class whith

which the Middleware application is started.
Mode Genrates the GUI window shown in figure 13.2,

where the user can select in which mode the
middleware application shall be run.

Feeder Generates the GUI window shown in figure 13.4. The
user can then control the simulation and give input
to it from the feeder. The input to the feeder are
executed in the simulation by the use of the
AmodRunX class.

SocketComm Generates the GUI window shown in figure 13.5.
This class receives simulation commands from the
Socket Agent in the MAS, parses these commands
with the help of the CommaStringParser class and
executes these simulation commands by the use of
the AmodRunX class. This class also sends received
simulation events in the AmodRunX class to the
MAS.

AmodRunX This class contains the Automod ActiveX Object and
is used by the Feeder class and SocketComm class to
the send simulation commands to the simulation.
These simulation commands are for example, to place
a ship block at a location, to order a KAMAG vehicle
to drive to a location, etc.(see the use cases in figure
13.3). This class also receives generated events in the
simulation, e.g. when a KAMAG arrives to a location
in the simulation, then this information is sent to the
MAS, with the use of the SocketComm class.

Database Connects to the SQL database, which contains
information about ship blocks, KAMAG vehicles,
and locations at OSS.

ShipBlock Whenever information about a ship block is extracted
from the database, the information is encapsulated in
a ShipBlock object.

CommaStringParser Is used by SocketComm and AmodRunX classes to
parse simulation commands and events. For
implementation specific details see section 14.2.3

Table 13.1: Middleware Class Descriptions

Part IV

Implementation and Test

170

Chapter 14

Implementation

In this chapter we will describe the implementation that are essential
to the project. The actual code for the implementation are placed in
appendix K and necessary references to this appendix are made.

14.1 AutoMod

The simulation model contains two main types of processes, which are the
logic for a queue and the logic for controlling a vehicle.

14.1.1 Queue logic

The code for a storage location is shown below. See figur 10.14 for a flow-
diagram.

begin
wait f o r 10 sec
move i n t o Q_V122

i f pm. CP_V122 v e h i c l e l i s t s i z e >0 and pm. CP_V122 path d i s t a n c e
to pm. CP_V122 v e h i c l e l i s t f i r s t = 0 then

begin
i f pickUp = true and kamagPtr = pm. CP_V122 v e h i c l e l i s t f i r s t

then
begin

s e t pickUp to f a l s e
s e t transportFrom to pm. CP_V122
wait f o r 20 sec
move i n t o pm. CP_V122
c a l l F_blockPickedUp (kamagPtr , pm. CP_V122) ;
send to P_kamagManager

end
i f e x i t = f a l s e

send to P_V122
end

171

172 CHAPTER 14. IMPLEMENTATION

Furthermore in the painting queues we also have the following line of code
included in the second if-block:

s e t t h i s load c o l o r to nextof (l t b l u e , magenta , red)

14.1.2 Vehicle logic

The AutoMod code for the process logic in a vehicle is shown below. Se
figure 10.13.

begin
/ *
Dummy l o a d . When t h e v e h i c l e s h o u l d d r i v e t o a s p e c i f i e d

l o c a t i o n .
* /
i f load type = L_dummy then
begin
move i n t o kamagPtr current l o c a t i o n
t r a v e l to transportNext
c a l l F_arr ivedToDest inat ion (kamagPtr , t ransportNext)
end

/ *
Sh ip b l o c k . When t h e v e h i c l e i s t r a n s p o r t i n g a b l o c k .
And has t o d r i v e wi th t h e b l o c k .
* /
e l s e
begin

i f t ransportNext != n u l l and transportNext != kamagPtr current
l o c a t i o n then

begin
t r a v e l to transportNext
c a l l F_arr ivedToDest inat ion (kamagPtr , t ransportNext)
end

/ * Check i f l o a d s h o u l d be dropped * /
i f t ransportNext != n u l l and transportNext = kamagPtr current

l o c a t i o n and putDown = true then
begin
c a l l F_blockDroppedDown (kamagPtr , t ransportNext)
send to F_getProcessPtrFromLoc (kamagPtr current l o c a t i o n)
end

/ * Load s h a l l no t be dropped , r e p e a t p r o c e s s * /
e l s e
begin
wait f o r 30 sec
send to P_Kamag4843
end
end
end

14.2. MIDDLEWARE 173

14.1.3 Time event generation

The AutoMod model has a clock, which defines the time in the simulation
model. This time needs to be same in the multi-agent system, so that the
agents can carry out their planned schedules at the correct times. We have
therefore first tried to synchronize the time in the multi-agent system with
the simulation model, by sending a socket message with the current simu-
lation time at regular intervals1. This didn’t succeed very well, because it
made the simulation run slower. We therefore chose another approach, the
eventbased approach. Whenever an agent makes a schedule, and wants
to be notified at a specific time according to that schedule, the function
F_generateTimeEvent needs to be called with that time. This function takes
two arguments (Hour and Minute), creates a dummy-load and sends it to
the process P_generateTimeEvent. The function F_generateTimeEvent is
shown below:

begin F_generateTimeEvent funct ion

/ * System d e f a u l t t ime u n i t i s s e c o n d s * /
s e t LPtr_dummy eventTime to ARG_eventHour *60*60 +

ARG_eventMinute *60 − ac

clone 1 load of LPtr_dummy to P_generateTimeEvent

return 1
end

The process P_generateTimeEvent waits until the specified time has
been reached, and notifies the multi-agent system. The code for this process
is shown below:

wait f o r eventTime

p r i n t " timeEvent " " , " ac to V_tempString
c a l l FireUserEvent (0 , V_tempString)

14.2 Middleware

14.2.1 Distance calculation of neighboring control points

The A-star algorithm uses distance costs between a control point and its
neigbours. We have therefore by looking at figure 9.4, taken each control
point and written its neighbours in a table in an Excel-file2. A part of the
table are shown in figure 14.1.

1We tried and interval of 1 minute, i.e. we sent a time message for every simulation
minute

2The file called ControlPoints.xls

174 CHAPTER 14. IMPLEMENTATION

Figure 14.1: Part of control point neigbour table

From the figure we can see that control point “U211_1” has the neig-
bours “S811_1”, “U211_2”, “V111_1”, and “U316_2”.

In Excel, the created table, is then saved as an XML-file, so that we can
process each control point. A part of the XML-file is shown below.

<Row>
<C e l l><Data ss :Type=" S t r i n g ">U211_1</Data></C e l l>
<C e l l><Data ss :Type=" S t r i n g ">S811_1</Data></C e l l>
<C e l l><Data ss :Type=" S t r i n g ">U211_2</Data></C e l l>
<C e l l><Data ss :Type=" S t r i n g ">V111_1</Data></C e l l>
<C e l l><Data ss :Type=" S t r i n g ">U316_2</Data></C e l l>

</Row>
<Row>

<C e l l><Data ss :Type=" S t r i n g ">U211_2</Data></C e l l>
<C e l l><Data ss :Type=" S t r i n g ">T111_2</Data></C e l l>
<C e l l><Data ss :Type=" S t r i n g ">T111_1</Data></C e l l>
<C e l l><Data ss :Type=" S t r i n g ">U211_1</Data></C e l l>

</Row>
<Row>

<C e l l><Data ss :Type=" S t r i n g ">U316_1</Data></C e l l>
<C e l l><Data ss :Type=" S t r i n g ">S811_1</Data></C e l l>
<C e l l><Data ss :Type=" S t r i n g ">V111_1</Data></C e l l>
<C e l l><Data ss :Type=" S t r i n g ">U316_2</Data></C e l l>

</Row>

When the user selects3 “Add distances from XML file” in the Feeder as
shown in figure 14.2, the code shown in K.1 will be executed. This code
will generate a hashmap, where the key is a control point, and the value is
a list of control points(the value represents the neighbours of the key). At
last the method “database.insertDistances(controlPoints);” will be called,
which is shown in section K.2. This method will find the distances between
all neighbouring control points and insert them to the MySQL database.

14.2.2 Coordinate Calculation of Control Points

To use the A-star algorithm for finding the shortest path, between two Con-
trol Points in the system, we have to know the coordinates of all the con-

3Can only be selected when an AutoMod Model has been opened

14.2. MIDDLEWARE 175

Figure 14.2: GUI window to add neighbours and their distances

trol points. A control point is located on a path in the AutoMod simula-
tion model. An example of a path system with belonging control points is
shown in figure 14.3

Figure 14.3: Example path system with control points

In this figure we see six path’s (the lines) and five control points (the red
spots). The two of the path’s which are blue, namely path2 and path4 have
the form of an arc, the other four path’s are straight lines.

The properties of a path is given next:

• a path has a unique name

• a path can be one or two directional (in our model all the paths are
two directional)

• a path can have the form of an arc or a straight line

• a path having the form of an arc has following properties

176 CHAPTER 14. IMPLEMENTATION

– (begX,begY), defines the the start coordinate of the arc
– (cenX,cenY), defines the center coordinate of the arc
– angle, defines the angle formed from the start point to the end

point from the center of the arc (se figure 14.4)

• a path having the form of a straight line has following properties

– (begX,begY), defines the the start coordinate of the straight line
– (endX,endY), defines the the end coordinate of the straight line

The properties of an arc path and a straight line path are shown respec-
tively in figure 14.4 and 14.5.

Figure 14.4: Arc path proper-
ties

Figure 14.5: Straight line path proper-
ties

The properties of a control point is given next:

• a control point has a unique name

• a control point is located on a path

• a control point has a distance, which is measured from the start of
the path which it is located on

So the coordinate of the control point in the AutoMod model is not
given, only the distance from the beginning of the path is given. We will
then calculate the coordinate (coordX,coordY) of a control point. The cal-
culation method of the control point coordinate depends on whether the
controlpoint is located in an arc path or a straight line path as shown in
figures 14.6 and 14.7, where the red spots are control points.

In the next two subsections we will show how to calculate (coordX,coordY)
when the control point is located on an arc path or on a straight line path

14.2. MIDDLEWARE 177

Control point on arc path

Figure 14.6 below shows the different properties of an control point located
on an arc path (The path properties are also shown).

Figure 14.6: Control point located on an arc path

To calculate the coordinate (coordX,coordY) of a control point located
on an arc path we have to do following:

1. translate (cenX,cenY) and (begX,begY) so that (cenX,cenY) becomes
(0,0)

2. calculate the radius and circumference of the circle, which the path is
a part of.

3. change the coordinates of (begX,begY) to be in the unit circle

4. calculate begAngle (see figure 14.6)

5. calculate begCPangle (see figure 14.6)

6. calculate CPangle (see figure 14.6)

7. calculate the coordinate of the control point in the unit circle (co-
ordX0Unit,coordY0Unit) by the help of CPangle

8. multiply (coordX0Unit,coordY0Unit) with radius to get (coordX0,coordY0)

178 CHAPTER 14. IMPLEMENTATION

9. translate (cenX,cenY) back from (0,0) to original coordinate and trans-
late (coordX0,coordY0) accordingly

The code for finding (coordX,coordY), are shown in section K.3

Control point on straight line path

Figure 14.7 below shows the different properties of an control point located
on a straight line path (The path properties are also shown).

Figure 14.7: Control point located on a straight line path

To calculate the coordinate (coordX,coordY) of a control point located
on a straight line path we have to use following two equations

y =a · x + b (14.1)

d =
√

(x2 − x1)2 + (y2 − y1)2 (14.2)

The first equation is the equation for a straight line, where a is the slope
of the line and b is the intersection of the line with the y-axis. The second
equation is the equation for a distance between two points in a coordinate
system.

The steps in calculating the coordinate (coordX,coordY) of a control
point located on a straight line path are shown below:

1. If the straight line path is vertical then

14.2. MIDDLEWARE 179

• coordX = begX and coordY is either begY + distance or begY -
distance depending on whether endY or begY is biggest.

2. Else

(a) Find a and b in equation 14.1, by using (begX,begY) and (endX,endY).

(b) Insert (begX,begY) and (coordX,coordY) in equation 14.2 so that
we get d =

√
(coordX − begX)2 + (coordY − begY)2

(c) Insert (coordX,coordY) in equation 14.1 so that we get coordY =
a · coordX + b

(d) Insert coordY = a·coordX+b into d =
√

(coordX − begX)2 + (coordY − begY)2

and solve the second degree equation (only coordX is unknown).
From the two solutions, pick the one that is located inbetween
begX and endX

(e) Use coordY = a · coordX + b, to find coordY

The code for finding (coordX,coordY), are shown in section K.4

14.2.3 Middleware communication and reflection

The middleware handles method calls from the Muti-Agent System and
the AutoMod ActiveX Runtime object. In the next two subsections, we will
look at how the middleware handles a method call from:

1. the Multi-Agent System

2. the AutoMod Runtime Object

Handling the Multi-Agent System

When the middleware is started in “socket mode”, it will run a TCP/IP
socket server, which will listen for a connection from the Multi-Agent Sys-
tem. The code for this is shown in K.5. This code will establish a connec-
tion between the Multi-Agent System and the middleware whenever the
Multi-Agent System wishes to make a change in the AutoMod model, by
executing a method in the middleware. The Multi-Agent System will send
af string containing a method name and some parameters (which will be
comma separated) for the method. An example of such a string is shown
below.

S t r i n g command = ‘ ‘ driveToLocation , H111 , Kamag4843 ’ ’

This string will be parsed as

• methodName = “driveToLocation”

• parameters = “H111,Kamag4843”

180 CHAPTER 14. IMPLEMENTATION

The middleware will then invoke the method driveToLocation with
given the parameters. In this case the KAMAG vehicle “Kamag4843” will
drive to location “H111” in the AutoMod model.

The methods that can be executed from the Multi-Agent System in the
middleware are shown beneath

• driveToLocation(String destination, String kamag)
The specified KAMAG vehicle will drive to the specified location in
the AutoMod model

• pickUpBlock(String location, String kamagNo)
The specified KAMAG vehicle will pick up a ship block from the
specified location in the AutoMod model

• putDownBlock(String kamagNo)
The specified KAMAG vehicle will put down a ship block into the
current location of the KAMAG in the AutoMod model

• placeBlocksKamags(String blocks, String kamags)
The given comma separated strings of ship blocks/locations and KA-
MAGSs/locations will be used to intialize the AutoMod model, by
placing the ship blocks and KAMAGs at thge specified locations.

• addTimeEvent(String hour, String minute)
This method will point out the AutoMod model to generate a timeEvent
at the given time

Handling the AutoMod Runtime Object

The running AutoMod model, can also execute methods in the middleware
to inform the Multi-Agent System about various changes/information in
the model. The methods that the AutoMod model can execute are shown
beneath.

• arrivedToDestination(String kamagAgent, String location)
Informs the MAS, that the given KAMAG vehicle (an agent in the
MAS), has arrived to the given location.

• blockPickedUp(string kamagAgent, string location)
Informs the MAS, that the given KAMAG vehicle (an agent in the
MAS), has picked up a shipblock in the given location.

• blockDroppedDown(string kamagAgent, string location)
Informs the MAS, that the given KAMAG vehicle (an agent in the
MAS), has dropped down a shipblock in the given location.

• timeEvent(String absoluteTime)
Informs the MAS about the current time in the AutoMod model.

14.3. DECAF 181

• trigger()
Triggers the MAS, which will make the D-planner/coordinator agent
coordinate the transportation tasks.

In fact AutoMod generates an event (a user event), which contains an
integer and a string. This event is captured by the method

p r i v a t e void amx_OnUserEvent (i n t i , S t r i n g s t r)

which is shown in K.6. The mentioned methods above are then executed
by reflection.

Comma string parser

The Comma string parser is used to extract the method name and the pa-
rameters from a comma separated string. The first element in the comma
separated string is the method name, the rest are the arguments. The class
CommaStringParser has following methods:

• getArgumentAtPosition: Returns an argument in the comma string,
the position has to bigger than 1 and less than the actual arguments.

• getArguments: Returns all the arguments in the comma string.

• getMethodName: Returns the method name in the comma string,
which is the first element in the comma string.

• getNumOfArguments: Returns the number of arguments in the comma
string.

The code for the CommaStringParser class is shown in K.7

14.3 DECAF

In this section we will first describe which changes we have made to the
DECAF framework and why. After that we will describe the benefits of
moving the DECAF framework into Eclipse, which maked it a lot easier to
implement the necessary agents, and especially in running the agents.

14.3.1 Modifications to the DECAF framework

The DECAF framework is built in such a way that all the implemented
agents and their belonging classes has to be placed at the default pack-
age4, where the DECAF framework with its 55 classes also reside. This
structure confuses the programmer, which will have a bad overview of the

4the root folder of the source code

182 CHAPTER 14. IMPLEMENTATION

classes. We have therefore made a new package called “decaf”, where we
have placed the code for the DECAF framework. We have then changed
the framework, so that a DECAF agent shall have its own package, instead
of beeing placed in the default package.

To fulfill the modifications mentioned, the code below which appears
in the class “ExecutorThread.java” at lines 103,168 and 212 have been mod-
ified.

C = Class . forName (a c t i o n) ;

The first two occurences of the code above has been replaced with

C = Class . forName (" decaf "+" . "+ a c t i o n) ; / / g e t t h e c l a s s

and the last one has been replaced with

S t r i n g agentDir = " " ;
i f (Local . getAgentName () . subs t r ing (0 , 5) . equals ("Kamag"))
{

agentDir = "kamag" ;
}
e lse i f (Local . getAgentName () . subs t r ing (0 , 8) . equals (" CPlanner "))
{

agentDir = " cPlanner " ;
}
e lse
{

agentDir = Local . getAgentName () . subs t r ing (0 , 1) . toLowerCase () +
Local . getAgentName () . subs t r ing (1) ;

}
C = Class . forName (agentDir+" . "+ a c t i o n) ; / / g e t t h e c l a s s

The code above makes it possible for two or more Kamag (or CPlanner)
agents to share the same set of tasks, so that we dont need to make a java
package for each of the Kamag (or CPlanner) agents. It can also be seen
from the code that the package name for an agent has to start with a lower-
case character(e.g. the source code for the DPlanner has to be placed in the
dPlanner package, or the framework will not be able to find the tasks/ac-
tions that the DPlanner can execute, which will result in a breakdown of
the framework).

Planeditor modification

The planeditor needed also some modifications to work correctly after the
structure change of the framework. The following code below in the class
file “PEFile.java”

S t r i n g JavaCode =
" import java . io . * ; \ n"+

has been rewritten to

14.3. DECAF 183

S t r i n g packagedir = di r . getPath () ;
packagedir = packagedir . r e p l a c e (" s r c \\" , " ") ;
S t r i n g JavaCode =
" package "+packagedir+" ;\n\n"+
" import decaf . Agent ;\n"+
" import decaf .KQMLmsg;\n"+
" import decaf . LinkedListQ ;\n"+
" import decaf . P r o v i s i o n C e l l ;\n"+
" import decaf . U t i l ;\n"+
" import java . io . * ; \ n"+

This code is used when the user of the planeditor auto-generates the
task-files for the Decaf agents.

14.3.2 Running DECAF from Eclipse with ANT

The Multi-Agent System that we have built with Decaf contains following
agents:

1. CommAgent 6. Kamag4843
2. CPlannerHalOst 7. Kamag4846
3. CPlannerHalSyd 8. Kamag4847
4. DPlanner 9. Kamag4848
5. InitAgent 10. Kamag4849

To run an agent in Decaf, it is required that the ANS is running. The
ANS can be started in the command prompt with following command:

java ANS

Each agent has also to be started in the console, e.g. the “CommAgent”
is started as shown below

java decaf.Agent -agn CommAgent -p commAgent/commAgent.lsp -gui -go

But before this can succeed the user needs to setup the CLASSPATH
too. So to simplify all this, we have written an ANT script which can start
the ANS and all the agents by simply two mouse clicks (The CLASSPATH
is set relative to the eclipse decaf project). The ANT code is can be found in
the delivered the CDROM and a screenshot from the Eclipse ANT window
is shown in figure 14.8

14.3.3 Message sending in DECAF

DECAF agents execute actions by the use of KQML messages. We have
described KQML in section 5.7.1 and will now give a couple of examples
from our DECAF implementation.

184 CHAPTER 14. IMPLEMENTATION

Figure 14.8: Eclipse ANT window

Example 1: The code below is taken from the KAMAG agents’s “Ka-
mag_tell” task (se figure 11.2). The “else if” statement is entered, if the KA-
MAG agent has reached its destination, where it shall drop the ship block
it transports. The KAMAG agent will then set its internal state and send
a KQML message to the CommAgent, which will inform the AutoMod
model, that the KAMAG vehicle shall drop the ship block at the current
location.

e lse i f (arr ivedLocat ion . equals (toLocat ion))
{

Local . userHash2 . put (" pickUp " , f a l s e) ;
Local . userHash2 . put ("putDown" , t rue) ;

KQMLmsg K = new KQMLmsg() ;
K. addFieldValuePair (" performative " , " achieve ") ;
K. addFieldValuePair (" sender " , Local . getName ()) ;
K. addFieldValuePair (" r e c e i v e r " , "CommAgent") ;
K. addFieldValuePair (" language " , "DECAF") ;
K. addFieldValuePair (" ontology " , "CommAgent") ;
K. addFieldValuePair (" content " , " : task PutDownBlock "+
" : kamagNo "+kamagNo) ;

return new P r o v i s i o n C e l l (K. getKQMLString () , "OK") ;
}

Example 2: The code below is taken from the DPlanner agents’s “DPlan-
ner_DistributeTransports” task (se figure 11.5). The method(action) below
is executed whenever the DPlanner agent makes a call for proposal to all

14.3. DECAF 185

the KAMAG agents, to hand over a transportation request from a CPlan-
ner. In the matter of fact, the KQML message below will execute another
task “DistributeTransport” located in the DPlanner agents, which then will
send the KQML message to each of the KAMAG agents.

private void sendCFPToKamags ()
{

S t r i n g [] kamags = { " Kamag4843 " , " Kamag4846 " , " Kamag4847 " , "
Kamag4848 " , " Kamag4849 " } ;

for (i n t i =0 ; i <kamags . length ; i ++)
{

KQMLmsg kqml = new KQMLmsg() ;
kqml . addFieldValuePair (" performative " , " achieve ") ;
kqml . addFieldValuePair (" sender " , l o c a l . getName ()) ;
kqml . addFieldValuePair (" r e c e i v e r " , l o c a l . getName ()) ;
kqml . addFieldValuePair (" ontology " , " DPlanner ") ;
kqml . addFieldValuePair (" language " , "DECAF") ;
kqml . addFieldValuePair (" content " , " : task D i s t r i b u t e T r a n s p o r t

: kamagAgent "+kamags [i]+
" : convID "+convID) ;
U t i l . send (kqml . getKQMLString ()) ;

}
}

186 CHAPTER 14. IMPLEMENTATION

14.4 Cougaar

We first describe how to generate property groups and assets, then how
basic features of the agents are implemented, concerning publishing and
subscribing objects in plugins. Futhermore we describe how agents are or-
ganized, meaning their awareness of each other in the society, and describe
how the customer/provider relationship between agents have been imple-
mented. Moreover we describe how agent-to-agent communication have
been implemented, and finalize this section describing the implementa-
tion of the environment(the graph from section 9.4) and the A* algoritm
for path-finding in the graph.

14.4.1 Property groups and Assets

In this section we describe how Property groups and assets have been im-
plemented in the cougaar framework.

Assets are defined in a asset definition file(def file), e.g. “assets.def”. In
this file every asset are specified with their name, what property groups
they contain, and a describtion (doc). An asset can be composed of mul-
tiple property groups, which are defined as slots, e.g. the KamagAsset is
composed of three properties groups; VehiclePG, ContainerPG and Ship-
BlockPG as seen below:

[KamagAsset org . cougaar . planning . ldm . a s s e t . Asset]
s l o t s = VehiclePG , ContainerPG , ShipBlockPG
doc=Representat ion of a Kamag v e h i c l e inc luding r e p r e s e n t a t i o n of

a v e h i c l e and a co nt a i ne r

[TransportAsset org . cougaar . planning . ldm . a s s e t . Asset]
s l o t s = TransportPG
doc=Representat ion of a t r a n s p o r t a t i o n r e s e r v a t i o n

[ControlPointAsset org . cougaar . planning . ldm . a s s e t . Asset]
s l o t s = StoragePG , SupplyPG , EquipmentPG , PaintPG , ShipBlockPG
doc=Representat ion of a t r a n s p o r t a t i o n r e s e r v a t i o n

Property groups are specified in properties definition files(def), e.g. “prop-
erties.def”. In this file all property groups are defined, where the name
is specified, e.g. “[VehiclePG]”, and the attributes are specified with their
name and type, such as “double speedKMH”, which indicates that speed-
KMH is of type double. There is no limitation regarding the number of at-
tributes in a property group. One can specify docs in order to make the gen-
erated classes more readable later on. Below are listed the property groups
we have implemented in our Cougaar multi-agent system. As seen below,
property groups do not need to have any atributes, if their property is de-
scribing enough.

14.4. COUGAAR 187

[VehiclePG]
doc=Contains information regarding the v e h i c l e v e l o c i t y
s l o t s =double speedKMH, double maxSpeedKMH
speedKMH . doc=The v e l o c i t y in Km per hour of the v e h i c l e
maxSpeedKMH . doc=The maximum v e l o c i t y of the v e h i c l e in Km per hour

[ContainerPG]
s l o t s =double payload , double maxPayload
payload . doc=The payload placed in the co nt a i ne r
maxPayload . doc=The max payload t h a t can be placed in t h i s

co n ta in er

[TransportPG]
doc=Contains information regarding t r a n s p o r t a t i o n request from
s l o t s = S t r i n g blockNo , S t r i n g pickUpLocation , S t r i n g

dropOfLocation , Date time , i n t p r i o r i t y
blockNo . doc = the type i d e n t i f i c a t i o n of the ship block
pickUpLocation . doc = The l o c a t i o n to pick up the ship block
dropOfLocation . doc = The l o c a t i o n to drop of the ship block
time . doc = The time , a t which the ship block should be picked up
p r i o r i t y . doc = The p r i o r i t y of the transport , where a 1 i s most

urgent

[ShipBlockPG]
doc=conta ins information regarding a shipblock
s l o t s = S t r i n g blockNo , double blockWeight , double blockLength ,

double blockBreadth , double blockHeight , S t r i n g grandBlockNo ,
S t r i n g BlockFamily

[StoragePG] [SupplyPG] [EquipmentPG] [PaintPG]

Once we have specified the definition files “properties.def” and “assets.def”
we run the PGWriter(with “properties.def” as input) provided with Cougaar
to generate the property group java files. After the property group classes
have been generated we run AssetWriter(with “assets.def” as input), which
generates the assets automatically. Get and set methods for all attributes are
automatically generated and the classes are serializeable. Thats all there is
to it, now we have generated our property groups and our assets.

14.4.2 Organizing agents

The agents in a Cougaar society are defined in a society file, wherein the
relations between the agents are defined. Agents must have an organiza-
tional asset representing it in the society. An organizational asset contains
information regarding the agents messageaddress, its itemidentification(its
name) and a role, which indicates the group the agent belongs to.

We have used customer/provider relationships between the groups in our
society, where the customer allocates tasks to providers. Organizational as-

188 CHAPTER 14. IMPLEMENTATION

sets are created with the AssetDataParamPlugin class, as shown below. The
agent name, the agent messageadress and the itemidentification have been
given the same name for simplicity (highlighted in red). In the example be-
low are seen a PA, which has the role “TransportPlanner”(highlighted in
blue). The agent below is a customer, thus we do not specify a relationship,
since they are specified at providers.

<component c l a s s =" org . cougaar . planning . plugin . a s s e t .
AssetDataParamPlugin ">

<argument> P r o t o t y p e : E n t i t y </argument>
<argument>ClusterPG:MessageAddress:MessageAddress:Planner</

argument>
<argument> I t e m I d e n t i f i c a t i o n P G : I t e m I d e n t i f i c a t i o n : S t r i n g : P l a n n e r </

argument>
<argument> T y p e I d e n t i f i c a t i o n P G : T y p e I d e n t i f i c a t i o n : S t r i n g : U T C /RTOrg

</argument>
<argument> E n t i t y P G : R o l e s : C o l l e c t i o n&l t ; Role> ; :TransportP lanner</

argument>
</component>

The relationship is specified at the provider, and the CA has the following
extra line in its organizational asset:

<argument>Relationship:MessageAddress=Planner , I t e m I d e n t i f i c a t i o n =
Planner , T y p e I d e n t i f i c a t i o n =UTC/RTOrg , Role=TransportCoordinator
, StartTime =01/01/2007 12 : 0 0 am, EndTime=</argument>

As seen above in the relationship we specify the messageadress of the cus-
tomer(highlighted in red), and the providers role(highlighted in blue). Then
the planner can subscribe to organizational assets, that has the “Transport-
Provider” role, and publish allocation which will then be copied to the
providers blackboard. The time indicates when the relationship starts and
when it ends, and since the relationship is permanent we dont specify and
end time.

14.4.3 Interaction

Our agents have predefined customer/provider relationships and organi-
zational assets representing them. Interaction between agents are imple-
mented with the customer/provider relationship, where customers pub-
lishes allocations to their own blackboard, which is then copied to the providers
blackboard. An Allocation is composed of a task, a plan and an organi-
zational asset(the receiver/subscribing provider). When a customer pub-
lishes an allocation to the blackboard it is automatically copied to the providers
blackboard.

private void a l l o c a t e T o (Asset asse t , Task task) {
A l l o c a t i o n R e s u l t estAR = null ;

14.4. COUGAAR 189

A l l o c a t i o n a l l o c a t i o n = ((PlanningFactory) getDomainService () .
ge tFac tory (" planning ")) . c r e a t e A l l o c a t i o n (task . getPlan () ,
task , asse t , estAR , Role . ASSIGNED) ;

getBlackboardService () . publishAdd (a l l o c a t i o n) ;
}

14.4.4 Environment and RoutePlanner

We have used the A-star algorithm for finding the shortest path between
two locations in the OSS AutoMod model. This path is used by the KAMAG
vehicles to drive from one location to another. The implementation of the
A-star algorithm is described in [12], which we have modified to suit our
case. The classes and their descriptions are given below:

• AStarNode is the abstract class which represents a node in the graph
(see the OSS graph in 9.3).

• AStarSearch contains the method findPath which takes two nodes as
arguments (start and end node), and returns a list of nodes which
represents the path, not including the start node.

• ControlPoint is the implementation of the AStartNode class. A con-
trolpoint can contain a shipblockPG and/or a KamagAsset. It imple-
ments all the abstract methods from the AStartNode class, and has a
few get/set methods for its following attributes:

– controlPointName: The name of the node in the graph.

– pathName: The name of the path where this node is located on.

– coordX and coordY: the coordinate of this node in the AutoMod
model.

– blocked: A boolean which indicates, whether this node is occu-
pied with a KAMAG vehicle or a ship block.

• Environment is the class which contains the OSS graph (the graph in
figure 9.4). The class is a singleton, and reads the graph information
from a MySQL database into the four attributes of the class when ini-
tiated. These four attributes and their responsibilities are as follows:

– controlPoints is a hashtable containing all the controlpoints of the
OSS AutoMod model. It maps controlpoint names to AStarN-
odes, which in fact are ControlPoints.

– neighbors is a hashtable mapping each controlpoint name in the
OSS graph to its neighbour controlpoint names

190 CHAPTER 14. IMPLEMENTATION

– distances is a hashtable mapping each controlpoint in the OSS
graph to a hashmap which contains the neighbour controlpoints,
which in turn maps a controlpointname to a distance. With this
hashmap, one can easy get the distance between two control-
points, shown by an example beneath

(d i s t a n c e s . get (‘ ‘ H111 ’ ’)) . get (‘ ‘ V122 ’ ’) ;

– realDistances is a hashtable mapping each controlpoint in the OSS
graph to a hashmap which contains the neighbour controlpoints,
which in turn maps a controlpointname to a distance. The differ-
ence between this hashtable and the one above, is that the dis-
tances in the distances hashtable are modifed whenever an en-
tity is placed on a controlpoint and when the entity is removed
again, then the original distance value is replaced from realDis-
tances hashtable.

This class contains also the important methods, described below:

– public ControlPoint getControlPoint(String controlPointName)
This method returns a ControlPoint given a controlpoint name as
an argument.

– public double getCPDistance(ControlPoint CP1, ControlPoint CP2)
This method returns the distance between two controlpoints in
the OSS graph.

– public List<AStarNode> getCPNeighbors(String controlPointName)
This method returns a list of neighbour controlpoints given a
controlpoint name as an argument.

– public void addObstacleToCP(ControlPoint controlPoint)
This method increments the distances from the given control-
point to its neighbours by a virtualdistance=100000, to indicate
to the “path algorithm” that this controlpoint is blocked.

– public void removeObstacleFromCP(ControlPoint controlPoint)
This method decrements the distances from the given control-
point to its neighbours by a virtualdistance=100000 if the neigh-
bour is not blocked,. This will indicate the “path algorithm”that
this controlpoint is now open for passage again.

• MoreMath contains different math methods and the one that is used
by the A-star algorithm is the sign method. This method returns -1 if
the given argument is negative, 1 if it is positive and 0 else.

Chapter 15

Test

Test cases have been performed in order to verify subparts of the over-
all system. The test cases described in this chapter are all associated
with a video that are located in delivered CDROM.

15.1 Simulation

In this section we will set up test cases, which purpose is to test different
parts of the simulation model. We will test if we have fulfilled the require-
ments to the simulation model.

15.1.1 Test case : Create ship block

In this test we will simply test the functionality of creating a ship block and
placing it in the simulation model. With this test, we test the ability to create
a ship block in the simulation model, and the ability to place it in a given
queue, that is visualizing it to the user. This test is performed on the two
different ship blocks in table 15.1.

GRANDBLOCK DATA
GB no. Weight [T] Length

[m]
Breadth
[m]

Height
[m]

112C 703 17.5 21.1 18.2
214P 262 17,5 27,3 8,2

Table 15.1: Test case ship block

The grandblocks listed in table 15.1 already exist in the OSS database 1 and
are therefore accessable from the Feeder.
The test video “testvideo1_1.wmv” shows steel section 112C and 214P from
table 15.1 being placed at V122 and V311 respectively. In the video “testvideo1_1.wmv”

1see section F.1 for information about this database

191

192 CHAPTER 15. TEST

it is seen that the blocks and locations are accessable from the Feeder and
that the blocks are inserted in the simulation model correctly. When blocks
are placed in the simulation model, they stay where they are placed until
they are pickup by a KAMAG vehicle or removed.

15.1.2 Test case : Remove ship block

In this test, we test the ability to remove ship blocks from the simulation
model. First we create and place ship block 112C and 137C at location V311
and V250 respectively. Then we remove them with the Feeder again as
shown in “testvideo1_2.wmv”.

15.1.3 Test case : Transport ship block

In this test case we test how transportation is performed. A transportation
is divided into the subtasks “pick up ship block”, “put down ship block”
and “drive to location”, which are described in the following subsections.
Since theese tasks together form the transportation task, we will combine
these tests in one test video.

Test case : drive to a location

In this test, we test a KAMAG vehicle’s functionality of driving to a speci-
fied destination, such as a storage location or a control point. In the Feeder
we choose KAMAG 4843 and the destination B4 and tell the KAMAG to
drive without any ship block2 as seen in test video “testvideo1_3.wmv”.
Later we tell KAMAG 4846 to drive with a ship block to a location, which
works well as seen in the video, but a collision occurs between KAMAG
4843 and 4846. Collission control is not implemented in the simulation
model, because this is the responsibility of the system logic, i.e. the multi-
agent system.
The test video “testvideo1_3.wmv” has showed that we are fully able to
control the KAMAG vehicles in the simulation model externally using the
Feeder, and therefore controlling the simulation model from the MAS through
the middleware will also work.

Test case : Pick up a ship block with a vehicle

In this test we instruct a KAMAG vehicle to pick up a specified ship block.
In the Feeder GUI we select the KAMAG which shall pick up the ship block,
and then we specify the location, where the KAMAG vehicle is supposed
to pick up the ship block. When the KAMAG vehicle arrives to the storage
location, wherein the ship block is stored, the ship block will be picked up

2The transparent load that can be seen on the KAMAG vehicle is a “dummy load”

15.2. DECAF 193

onto the KAMAG vehicle. As seen in the test video “testvideo1_3.wmv” we
place three ship blocks at different locations (V311, V315 and V320), and tell
KAMAG 4846 to drive to location V320, pickup the ship block and drive to
location H111. The KAMAG vehicle correctly pick’s up the load from the
storage location, where the color of the storage location shifts color from
green to red, indicating that the storage location is now empty.

Test case : Drop down a ship block from a vehicle

Here we test wether the functionality of placing a ship block in a storage
location from a KAMAG vehicle functions as expected. In order to make a
KAMAG vehicle place the ship it carries at its current location, we select
the KAMAG vehicle in the Feeder and press the “PutDown Ship Block”
button. In “testvideo1_3.wmv” it is seen that KAMAG 4846 places the ship
block it carries into location H111 and drives to location H115 without any
ship block. So dropping down a ship block from a vehicle works well.

15.1.4 Test case : Painting of ship blocks at painting halls.

In this case we test whether ship blocks dropped at paintings halls get
painted. A ship block transported to a painting hall, without beeing dropped,
should not be painted. In the video “testvideo1_4.wmv”, it is shown that
the KAMAG 4843 vehicle transports shipblock 112C to KAB4 and back
to location V122 without dropping it. This does not change the painting
of the ship block. Then the same procedure is repeated, but this time the
ship block is also dropped down and picked up at KAB4. This process has
painted the ship block as desired.

15.2 DECAF

In this section we describe the two cases that we have tested the DECAF
implementation with.

15.2.1 Start and initialization

We have used eclipse to implement the MAS, with the use of the DECAF
framework. To start the MAS, we have written and ANT script, and in
eclipse we start the MAS by first clicking on “runANS” and afterwards
on “runAgents”. This will start 13 JAVA GUI’s, as seen in the movie “test-
movie2_1.wmv”. We then use the InitAgent to initialize the simulation model,
with initial setup of ship blocks and KAMAG vehicles. According to “test-
movie2_1.wmv” both the start of the MAS and initialization, succeeds very
well.

194 CHAPTER 15. TEST

15.2.2 Requesting transports

In this test case, the MAS is tested to see whether it is capable of any plan-
ning. The test case contains two C-Planner agents, each making five trans-
portation requests. The C-Planner agents and their request are shown in
figure 15.1 and 15.2

Figure 15.1: HalSyd C-Planner transportation requests

The planning in our DECAF MAS is implemented in such a way that when
C-planner agents requests for transportations, then the D-planner agent
collects these tasks in a list. The transportation tasks in this list are sorted
by their pick up times, and then by the length of their transportation times.
The D-planner is triggered for every ten minutes in the current implemen-
tation, which makes the D-planner take the first transportation task from
the list mentioned, an tries to delegate this task to a KAMAG agent as de-
scribed in section 11.2.2.
There is ten transportation tasks to be solved in this case, and only five KA-
MAG vehicles. The D-planner delegates the first five tasks. It seen in the
video that the KAMAG vehicles arrive approximately at the correct pickup
times. It can also be seen in the testvideo “testvideo2_2.wmv” that colli-
sions between KAMAG vehicles happen. This is due to the fact that the
routing of the KAMAG vehicles aren’t designed and therefore not imple-
mented in the MAS. The routing is done by the simulation model, which
choses the shorstest path to the pick up location of the ship block, without
taking care of other vehicles in its way.

15.3. COUGAAR 195

Figure 15.2: HalOst C-Planner transportation requests

We can conclude from the video “tesvideo2_2.wmv” that the agents works
well3, and that the implemented MAS solves the logistic case of transport-
ing ten ship blocks. The D-planner coordinates the tasks very well, and the
KAMAG vehicles transports the ship blocks at the correct times.

15.3 Cougaar

15.3.1 Test case : controlling basic functionality

In this case we test the basic functionality in the Cougaar framework con-
sisting of three agents, a PA a CA and a KVA, we will instruct the KVA to
transport a ship block from one location to another. Thereby also verifying
that the middleware can be used to exchange data between the simulation
model and the Cougaar society. The test video is called “testvideo3_1.wmv”.
This test is only conducted with one KVA, thus only verifying the basic
functionality.
We can conlude that the middleware can exchange data between the simu-
lation model and the cougaar society, and that the PA request a transporta-
tion from the CA, which forwards the request to the KVA, and that the
KVA accepts the task. The KVA picks up the block at its pick-up location,
and places the block at its put-down location.

3Besides collision aviodance

Part V

Reflection and Future Work

196

Chapter 16

Discussion and Conclusion

In this chapter we discuss the results, issues and experiences that we
have obtained in this thesis. We begin by discussing alternative ap-
proaches. Then we present the results from developing the simulation

model in AutoMod and discusses issues and experiences with AutoMod.
This is followed by presenting the results obtained from the development
of the multi-agent system in Decaf and Cougaar respectively, and further
evaluates the two MAS frameworks. Then we will present the result of de-
veloping the Middleware application, and in the following section we will
discuss future work in respect to this thesis project and OSS. We briefly
mention the various technologies we have worked on in this thesis. In the
last section of this chapter we conclude on the results archieved in this the-
sis.

16.1 Alternative approaches

We will in this section present alternative approaches, starting with overall
approaches, followed by a disscussion regarding alternative organization
of the agents.

16.1.1 Overall alternatives

In our thesis project we started by designing a detailed scaled version of
the OSS domain in a three dimensional graphical environment, modeling
every building, storage facility, as well as the dynamic entities, such as
KAMAG vehicles and the ship blocks, in order to simulate and visualize
the transportations at the shipyard. After designing the simulation model,
we developed a middleware application that included a feeder, which was
used to verify the simulation model. Finally we designed a multi-agent sys-
tem, and extended the middleware, such that data between the simulation

197

198 CHAPTER 16. DISCUSSION AND CONCLUSION

model and the multi-agent system could be exchanged.

An alternative approach could be to design a multi-agent system first and
then to develope a middleware application without a simulation model.
Instead the middleware could contain a virtual simulator as shown in fig-
ure 16.1, that could simply contain a lookup table. For example, when the
multi-agent system tells a KAMAG vehicle to drive from one location to an-
other, the virtual simulator could check the table, calculate the travel time
and generate an event to the multi-agent system, when the travel time has
passed.

Figure 16.1: Alternative solution: MAS with virtual simulator

A second approach could have been to design the overall system with a
complete MAS and a simple simulator either connected directly or through
some middleware as seen in figure 16.2. The simple simulation model could
simulate a driving vehicle, which given a distance, simulates to drive until
the distance has been travelled. The simulator could then generate an event
to the multi-agent system. The simple version of the simulator could for in-
stance be designed in a simulation tool like Renque.

Figure 16.2: Alternative solution: MAS connected with simple simulator

A third approach could have been to use a MAS framework, which has an
integrated simulator like Madkit for instance. See figure 16.2.

16.1. ALTERNATIVE APPROACHES 199

Figure 16.3: Alternative solution: MAS with integrated simulator

16.1.2 Alternative Agent Organization

In this thesis we have organized the agents, such that the human organiza-
tion at OSS have been preserved, i.e. multiple planner agents1, a centralized
coordinator agent2 and several KAMAG vehicle agents3, that represents C-
planners, D-planners and KAMAG drivers respectively.

An alternative could be to remove the centralized coordinator agent and
thereby letting planner agents coordinate and negotiate directly with the
KAMAG vehicle agents. This solution would make the system decentral-
ized, and eliminate a possible centralized coordination bottleneck. The down-
side with this approach is that the amount of information that would be ex-
changed would increase exponentially, thus instead of a centralized coor-
dinator negotiating with five KAMAG agents, every planner agent would
have to negotiate with every KAMAG vehicle agent.

Another alternative would be to view the transportation problem at OSS
from a higher degree of abstraction, e.g. introducing the B-planners4 as
agents in the system. With this approach we would be able to follow ev-
ery ship block through the entire system, thus introducing the possibility
of representing ship blocks as agents in the system, thereby making the ship
block agent the central agent in the system. The agent would then have a
life cycle starting at its creation (production or arrival) and ending at its
final destination at the dock. The ship block agent could then have knowl-
edge regarding its destined flow in the system, and it would be possible for
the ship block agent to request different services from other agents, such as
the transportation service, we have modeled in this thesis, and further to
use supply, equipment and painting agents5.

1C-planner agent in Decaf and Planner Agent in Cougaar
2D-planner agent in Decaf and Coordinator agents in Cougaar
3KAMAG agents in Decaf and KAMAG vehicle agents in Cougaar
4See section 2.2.2 for a description of the B-planner.
5Adapted from section 9.1.4

200 CHAPTER 16. DISCUSSION AND CONCLUSION

16.2 AutoMod

We have created a 3D simulation model(see figure 16.4) of the Odense Steel
Shipyard(OSS) using AutoMod in order to simulate reality. The graphical
simulation model is based on a dxf file provided by OSS, which contains
information regarding placement of all buidings, the road system, and ev-
ery storage location. The OSS road system have been designed with an
AutoMod Path Movement System, wherein AutoMod control points have
been placed according to a graph 9.4. The storage location have been mod-
elled with AutoMod queues, and the graphics have been made with ACE.
Each building have been designed independently in ACE. Likewise the
KAMAG vehicles in OSS have been modelled as AutoMod Vehicles in the
path movement system, with graphics designed in ACE.

Figure 16.4: The AutoMod simulation model of OSS

We fulfilled the functional requirements to the simulation model, which
were stated in section 10.1:

1. We can create a ship block, which has the following attributes
blockNo weight length breadth height grandBlockNo family

2. We can place a created ship block(loads) in any location(AutoMod
queue) we choose.

3. We can remove a ship block from the simulation.

16.3. DECAF 201

4. We have implemented processes that secures that ship blocks placed
in AutoMod queues remains there until they are removed from the
model, or picked up by a vehicle.

5. We have designed a path movement system identical to the road sys-
tem in the OSS problem domain.

6. A vehicle can travel on the path movement system to a specified lo-
cation(AutoMod control point) in the model, and can pick up ship
blocks (load) and place ship blocks in AutoMod queues.

7. We have full control of a vehicle in AutoMod, meaning that we can
navigate it to any location(AutoMod Control Point) we choose.

8. We have constructed the simulation such that it is possible to control
it externally using Active-X.

A limitation with AutoMod have been that the road system at OSS mainly
can be designed with the AutoMod path mover system, wherein roads do
not have a breadth. The functionality of the path mover system has limited
the degree of fredom in respect to modeling the passages at OSS in detail,
i.e. we can not use a single road so that two KAMAG vehicles can pass each
other simultaniously, without colliding.

Another limitation with AutoMod is the set of data structures it provides
to developers. For instance, when a vehicle in AutoMod arrives at a queue,
wherein it must place a ship block, it can retrieve the queue name of that
queue, but the problem is that the queue is controlled by a process, thus
we can not place the ship block in the queue without sending it to the pro-
cess. We are able to retrieve the process name, but are not able to retrieve
the process pointer. We solve this problem by retrieving the process pointer
through the AutoMod ActiveX runtime object. An obvious solution would
be for Brooks Software, which have developed AutoMod, to implement ac-
cessable hashtable datastructures in AutoMod, which would improve Au-
toMods functionality considerably.

16.3 DECAF

We have build a MAS with the DECAF framework and tested it with the
simulation model(se section 15.2). The disadvantage of the framework where
that every agent had to run in its own JVM, which made it impossible for
exhanging or sharing Java objects between the agents. Everything had to
go through KQML messages, which can only contain text strings.

202 CHAPTER 16. DISCUSSION AND CONCLUSION

We also modified the DECAF framework, because it is built in such a way
that all the implemented agents and their belonging classes has to be placed
at the default package, where the DECAF framework with its 55 classes also
reside. This modification is described in 14.3.1.

The DECAF framework contains a Plan Editor which makes it quite simple
to create new agent plans. The user of the framework, places tasks,actions,
non-local tasks, etc, and interconnect those by line. The user can then auto
generate the java skeleton files, where he needs to implement the logic of
the tasks.

The agents that we implemented in DECAF can be categorized as proactive
agents. Because they don’t perceive their environment, when they drive to
fulfill their transportation objective.

One of the main reasons for chosing this framework in this thesis was that it
contained a GPGP module. But later we found, that this module was under
development, so therefore we implemented our own simple planning of
the transportations requests in the D-planner agent.

16.4 Cougaar

We have designed a multi-agent system in Cougaar wherein the agents
have been organized into three groups, PA, CA and KVA, and the agent-
to-agent relations have been implemented with the customer/provider re-
lationship.
The KVAs6 are more reactive than the corresponding KAMAG agents7 we
designed to the Decaf framework. In fact the KVAs can now be categorized
as cognitive agents without the learning ability. The problem was that KA-
MAG agents did not respond to changes in the environment, such as ship
blocks and other KAMAG agents, meaning that a KAMAG agent could
drive through a ship block and through another KAMAG agent. This was
of course not acceptable, thus we solved this problem by designing and im-
plementing a graph representation of the OSS domain, and a path-finder
algorithm based on the A* algorithm, which finds the shortest path avoid-
ing obstacles(ship blocks). When a KVA places a ship blocks it updates the
graph, by increasing the cost on edges connected to the node(location), and
all KVAs are notified that the environment has changed, likewise when a
ship block is picked up by a KVA, the cost of the edges are descreased, and
the environment updated.

6KAMAG Vehicle Agents, Cougaar agents
7Decaf agents

16.5. MIDDLEWARE 203

The KVA is responsible for planning its own route in order to arraive at a
given destination, thus implying proactiveness. It respons to changes in the
enrionment, by negotiating with other KVAs(thus more social), an replan-
ning its route when neccesary. The KVAs now place Bids on TransportTaks
looking at its daily schedule to see if it can handle a transport task.

The CA is also a cognitive agent, which reasons about what agent is best
to choose in a given situation. As changes occur in the environment, the
CA dynamically replans its coordinations of transportation tasks, delegat-
ing tasks to the KVA with the best bid, which is estimated using a scor-
ing function, which gives transportation tasks with the highest priority, the
highest score, which maximum can be 1. The score of a bid regarding a task
with priority 2, can at most be 0.5, which is obtained if the agent can pick
the ship block up, exactly on time. When KVA routes intersect they will
have to communicate in order to resolve the intersection problem, which
contributes to the duration of both KVAs, thus another task might suffer
from this conflict, requirering replanning from the CA. When a given task
is considered not to be possible to solve within the deadline, the CA reports
a failure back to the PA.

The PA is a purely reactive agents, when only reacts on the input from
the user, by sending transportation requests, and by visualizing results re-
garding allocated transportation to the human user. When a task fails it is
reported to the PA, which updates the results in a monitor GUI, from where
the human user can accept the failure or replan his tasks. The final decision
regarding replanning is therefore left up to the top-level user.
External access from the multi-agent system have been implemented as a
plugin in a KVA, meaning that instead of having a centralized agent for
communication as the MAS we designed with Decaf, communication is
now decentralized, and only agents with the SimulationCommunication
plugin have the ability to exchange data with the simulation model.

16.5 Middleware

We have designed and implemented a middleware application that makes
it possible to exchange data between the simulation model and both multi-
agent systems. AutoMod provides two main types of external communi-
cation: socket and ActiveX. We chose to use ActiveX because it provided
extended access to AutoMod entities, such as pointers(Variables pointing
at AutoMod entities).

204 CHAPTER 16. DISCUSSION AND CONCLUSION

16.6 The learning process

In this thesis we have researched a real-world problem domain, worked
with several new technologies, such as the AutoMod simulation environ-
ment, the multi-agent terminology, corncerning BDI, AEIO and agents in
general. Furthermore we have experimented with two different MAS frame-
works, more specifically the Decaf framework involving the TAEMS lan-
guage for structuring tasks in MAS, and the Cougaar framework involving
the Cougaar methology. Moreover we have used the programming lan-
guage C# to develope our middleware application.

Experimenting with all those new technologies and concepts have been a
very educating experience, and a very comprehensive project.

16.7 Future Work

Allthough the implementation of the multi-agent systems in Decaf and
Cougaar demonstrate the essential functionality, some of the functional-
ity described in the design have not been fully implemented. Thus future
work will include a full implementation of the design.

Today KAMAG vehicle drivers communicate with D-planners and truck
drivers by using walkie-talkies. Truck vehicles are used to navigate the KA-
MAG vehicles at OSS. If the KAMAG vehicles were equipped with GPS, it
would be possible to track them, and thereby using a system, like the one
we have designed in this thesis, to navigate them. Thus in the future it
could be possible to make the transportations at OSS fully automated.

Every morning C-planners bi-cycles around their local areas at OSS in order
to check the storage locations to see what ship blocks are placed where,
and what storage locations are free, before they can make their individual
daily C-plans. At OSS they have considered to use the RFID8 technology to
keep track of inventory, but due to the large amount of steel used at OSS,
the radio frequency signals are weakened so much, that this technology
is unusable. If it were possible to apply another technology to keep track
on inventory, then it would also be possible to represent the real-world
locations of ship blocks in a simulation model like the one we designed.
This would make it possible to synchronize the real-world environment at
OSS and the simulation model, thereby updating the system and giving
planners and coordinators at OSS the ability to detect, when ship blocks
are misplaced, and to follow the entire flow of any ship block at OSS.

8Radio Frequency ID

Conclusion

The major objective with this thesis project was to design a decision
support tool for coordination of the daily transportations of ship
blocks at OSS, based on emulation and multi-agent technology. The

major objective was categorized into three objectives in section 2.5.1. We
conclude the work done by answering those objectives:

1. Emulation: We have designed and implemented a detailed three di-
mensional graphical simulation model in AutoMod. The simulation
model is a scaled version of the OSS domain, which contains ship
blocks, storage locations, buildings, KAMAG vehicles and a path sys-
tem. Furthermore functions are implemented, such that the simula-
tion model can be accessed by an external system for emulation pur-
poses.

2. Multi-agent system: We have designed two multi-agent systems with
the Decaf and the Cougaar framework respectively. The MAS de-
signed with Decaf, only concerns a subpart of the logistic problem at
OSS, but were fully implemented. The MAS designed with Cougaar
fully covers the logistic planning, but were partly implemented.

3. Middleware: We have designed and implemented a middleware ap-
plication that makes it possible to exchange data between the sim-
ulation model and both multi-agent systems. Furthermore the mid-
dleware application is able to update/insert OSS entities into our
OSS-database. Moreover the middleware contains a feeder that can be
used independently of the multi-agent systems to test various “what-
if” scenarious in the simulation model.

Ali Cevirici Henrik Møller-Madsen

May 11, 2007

205

Part VI

Appendix

206

Appendix A

Glossary

A.1 Acronyms

ACL Agent Communication Language

ALP Advanced Logistics Project

AMS Agent Management System

ANS Agent Name Server

API Application Programming Interface

DARPA The Defense Advanced Research Projects Agency

DBMS Database Management System

DF Directory Facilitator

DVMT Distributed Vehicle Monitoring Testbed

FIPA Foundation for Intelligent Physical Agents

FIPA-ACL Foundation for Intelligent Physical Agents - Agent Communi-
cation Language

FP Feasibility Precondition. The necessary condition which has to be ful-
filled before a FIPA agent can use a Communicative Act

GM General Motors

GPGP Generalized Partial Global Planning

GUI Graphical User Interface

HTN Hierarchical Task Network. The tree structure kind that is used by
the DECAF tasks.

207

208 APPENDIX A. GLOSSARY

KAMAG Karlsdorfer Maschinenbaugesellschaft. A vehicle to transport one
or more ship blocks

KQML Knowledge Query and Manipulation Language

MAS Multi-Agent System

MAES Multi-Agent System and Emulation

OSS Odense Steel Shipyard

PGP Partial Global Planning

PRS Procedural Reasoning System

RE Rational Effect. The effect, a FIPA agent expects, that will occur when
it uses a Communicative Act.

SL Semantic Language

SQl Standard Query Language

TAEMS A Framework for Task Analysis, Environment Modeling, and Sim-
ulation

UI User Interface

VKB Virtuel Knowledge Base. Each agent has some knowledge which are
located in its Virtual Knowledge Base. Virtual, because the knowl-
edge doesn’t need to reside in the agent, but can for example reside
in a database.

VM Virtual Machine

A.2 English-Danish Translations

Gantry crane Portalkran

Foremen/Supervisors Værkfører

Bends Bukke

Beds Senge: Transportation vehicles to smaller steel constructions

Gravel Grus

Keel of the vessel Køllægning af skib

A.2. ENGLISH-DANISH TRANSLATIONS 209

Girders Drager

Kerb Kantsten

Equipment quay Udrustnings kaj

Corrosion protection Rust beskyttelse

Fiery and Plasma glow Flamme- og plasmaskæring

Rolling Valsning

Area X Plan X området på OSS.

Scaffold Stillads

Appendix B

Research Phase

This chapter contains miscellaneous information collected from the research
phase, which is not of major relevance to the main report.

B.1 Aerial Overview of OSS

In this section we give an aerial overview of the OSS domain(seen in fig-
ure B.1), wherein we have marked areas, and halls. The aerial photo is not
up to date, thus some buildings and areas are missing, but our marks still
indicates where they are currently placed.

Figure B.1: Aerial overview of OSS. Areas are marked with squares and
halls with ellipses

210

B.2. MISCELLANEOUS PROBLEMS 211

B.2 Miscellaneous problems

Following problems have been statet by the D-Planner Claus Rønaa in our
discussion about the logistic problem at OSS. These problems are not con-
sidered to be within the scope of this thesis project, thus we merely state
the problems:

Problems

1. The so called "Beds" are sometimes transported back and forwarded
to the same place around track 6

2. If it is raining or has rained, KAMAG transporters can not access the
area B1250 caused by the gravel based foundation.

3. A few weeks prior to keel of the vessel, there are an insufficient amount
of girders and bends.

The following domain optimazation proposals have been suggested to solve
the problems:

Optimization proposal

• Scaffolds placed at location V122-V125 could with advantage be moved
to area A, a good reason to do this is that the weight of the scaffolds
are limited.

• The area B1250 should be asphalted, and the kerb should be removed.

• An extension of the area east of B1250, south of B1251 and B1252
would make an faster passage of KAMAG vehicles from Hal Øst

B.3 Production Flow

This section describes the production flow at OSS, which we have adapted
from their website1. We refer to figure 2.6 for a visual representation of the
following production flow:

1. Approximately 10.000 - 12.000 ton steel pass through each month.
Steel plates and profiles are being sandblasted, then painted to pro-
vide corrosion protection, before entering the ship building activity.

2. About 100.000 steel elements are cut to each ship by fiery and plasma
glow. This work is done at a profile factory with a profile cutting robot
and line to production of T-profiles.

1http://www.oss.dk

212 APPENDIX B. RESEARCH PHASE

3. At this phase the building and assembling of panels takes place, which
results in rectangular/right-angled sections. The process is mainly
automatized welding with robots. Rolling and folding of steel plates
and building of curved panels are mainly done by manual welding.

4. Assembling of rectangular sections (maximum 32m x 22m x 12m) is
done in Hall 1, which are welded by offline programmable robots.
Each week approximately 8.000 meters are welded. In Hall 2, bulb-
and boss sections and other sections considered difficult to weld are
assembled.

5. Seven painting halls are used for sandblasting and painting sections.
Approximately 1000 tons paint is used every year.

6. Both large and small components are produced e.g. approximately
10.000 pipes per ship.

7. Sections of engine rooms are being equipped in the Unit hall, likewise
outdoor equipments of sections in several levels takes place at the
dock area.

8. Sections are assembled to large establishment blocks in the block as-
sembly hall and by levels at the dock area.

9. OSS has got 3 docks, of which 2 of them are old ones. Dock 1 and
Dock 2 are the old ones with a dimension of 300m x 44,5m x 10m.
These old docks are used for storage and production of smaller parts
of the ships. The third dock has got a dimension of 415m x 90m x 11m,
and is used for new ships at the shipbuilding yard. The large sized
blocks are established to form a ship on 6 to 10 weeks depending on
the size of the ship. The gantry crane has got a payload of 1000 ton
serves dock 3 and the level at the dock area.

10. The ship is equipped and systems are tested for approximately 5 weeks.

11. Finally the ship goes for a test run to Skagerrak with a subsequent
finishing at Århus or Gøteborg, which takes approximately 8 days.

Appendix C

Example of a C-plan Dayreport

In this chapter a description of a C-plan Dayreport will be given. An exam-
ple of a dayreport is given in figure C.1.The actual size of the dayreport is
in A4. The date of the dayreport is given at the top of the paper and has the
format yymmdd. The next 5 rows contains following areas and ship-blocks
currently placed in those areas.

1. PLAN C

2. PLAN B

3. PLAN A

4. PLAN D, HAL-SYD VEST, MALEHALLER

5. PLADSER SYD FOR HAL-SYD, HAL-SYD ØST, PLADSER ØST FOR
HAL-SYD

Each of these areas is split in places, e.g. PLAN C consists of the places
V320, V319, V318, etc. Every ship-section has a ID-number and it is seen in
the figure that the ship-section 255 BB1 is placed in PLAN C at place V319.

The last part of the dayreport describes the transport and lifts to the
gantry crane. The transport part contains following information: the ID-
number of the section to transport, where to transport the section from/to,
the transport time.

1BB: port side and SB: starboard

213

214 APPENDIX C. EXAMPLE OF A C-PLAN DAYREPORT

Figure C.1: dayreport

Appendix D

DECAF

In this chapter we will describe the DECAF framework in more detail. First
we will give an overview of DECAF then describe the achitecture of DE-
CAF and at last describe the Plan Editor in DECAF.

D.1 An overview

Each agent in DECAF runs in its own JVM and has its own plan file which
defines its capabilities. Two or more agents can interact with the use of
KQML and only if they have registered with the ANS. The ANS is like a
“white pages”, where agents register themselves so other agents can find
them to communicate with them. In figure D.1 the arrangement of the ANS
and the agents can be seen.

Figure D.1: DECAF overview

The capabilities of an agent are described in the plan file, which will be
further explained in the Plan Editor section.

215

216 APPENDIX D. DECAF

D.2 The architecture

The architecture of decaf was previously shown in figure 5.13 and is shown
again in figure D.2 for convinience.

Figure D.2: Decaf architecture

There are five internal execution modules (square boxes) an the seven
associated data structures (blue boxes) defined in the DECAF structure [42].
We will now give a description of these elements in the architecture with
the help of [27].

• Agent initialization When the agent starts it will read the Plan File
and add the Tasks from that file to the Task Templates Hashtable. The
agent might also initialize some Domain Facts and Beliefs which can
be used in future execution of the agent. Optionally the agent might
have a Startup task, from which the agent can achieve initial goals
(e.g. we use Startup tasks to initialize GUI windows for different agents).
Finally the agent sets up socket and network communication and reg-
isters itself with the ANS.

• Dispatcher The dispatcher waits for incoming KQML messages into
the Incoming Message Queue. When the dispatcher receives a message
then it does one of following tree cases

1. If the message is part of an already started and ongoing conver-
sation, the dispatcher will find the action related to this conver-
sation in the Pending Action Queue and continue to complete the
task.

D.2. THE ARCHITECTURE 217

2. If the message is a start of a new conversation, then the dis-
patcher will create a new objective and place it in the Objectives
Queue.

3. If the message is malformed then the dispatcher has the respon-
sibility to send an error message to the sender of the KQML mes-
sage.

• Planner The planner waits for an objective in the Objectives Queue
and when an objective appears then the planner will create a TaskCell
and place it in the Task Queue. Currently the tasks that an DECAF
agent can execute, has to be fully specified in the Plan File; but in a
future release, only some parts of a task need to be specified, and then
the planner will be able to search for components to fill in the missing
parts of the task. Therefore in the current version of DECAF, there is
not much difference between TaskCell and an objective.

• Scheduler The scheduler waits until there is placed a TaskCell into
the Task Queue. The scheduler will then examine the actions defined in
the TaskCell which has the HTN form, and specify a specific execution
order for these actions and place the ordered actions in the Agenda
Queue.

• Executor The executor will execute actions placed in the Agenda
Queue if they are enabled for execution and their execution time lies
between the defined “start time” and “deadline”. The result of the
execution will be placed into the Action Results Queue. The scheduler
will then check whether the newly inserted “action result” is awaited
from an action in the Agenda Queue; if so and the action doesn’t miss
any other results, then the action will be enabled for execution and so
on.

Next we give a description of the seven data structures in the DECAF
architecture.

• Task Templates Hashtable: The tasks defined in the Plan File for the
agent, are stored as Task Templates in the Task Templates Hashtable at
agent initialization. Each task template contains:

– A name for the task

– A list of the subtasks and actions

– A list of inputs

– A list of outcomes

– An Utility function

218 APPENDIX D. DECAF

• Incoming Message Queue: Contains KQML messages that are re-
ceived but not yet processed by the Dispatcher.

• Objectives Queue: Contains objectives, which is similar to Task Tem-
plates, but with additional information added to the tasks, namely

– Inputs to the Task Template are supplied from received KQML
message

– Scheduling information is added

– A message ID is added in case that the message sending agent is
waiting for a reply in the ongoing conversation.

• Pending Action Queue: Contains actions that are part of and ongoing
conversation.

• Task Queue: Contains TaskCell’s, which are tasks that are ready to
be executed, though they may require results from other actions that
are/will be executed, before the scheduler will set the TaskCell to exe-
cution.

• Agenda Queue: Contains actions that are scheduled for execution.
Each action will be executed within its defined “start time” and “dead-
line” and only if the enablement flag is set.

• Action Result Queue: Contains already executed actions with a result
and an task ID, identifying which task this action belongs to.

D.3 Plan Editor

The Plan Editor is a GUI editor, used to define the capabilities of DECAF
agents. The capabilities of an agent is defined in its plan file which is gener-
ated by the use of the Plan Editor. The plan file consists of following com-
ponents:

• Tasks that the agent are able to achieve. When an agent receives a
KQML message it reacts by executing a Task. The name of the task
consists of an ontology and a name concatenated with and “_” inbe-
tween.

• Actions and subtasks are the components beneath the Task, and they
make up the Task.

• Relationships interconnects the Task, subtasks and actions, and de-
fines their ordering.

• Inputs are parameters or provision which are passed through from
incomming messages.

D.3. PLAN EDITOR 219

• Outcomes A Task or an action has a set of possible outcomes (a kind
of “return values”). At the end of the Task/action execution only and
only one of these outcomes will be returned. If a Task/action has
more than one possible outcome, then the actual outcome depends
on the code for the Task/action along with the input parameters.

Each of these components are shown in figure D.3, which shows an exam-
ple of a Task created in the Plan Editor. In this figure there is a Task called

Figure D.3: DECAF Task example

Example_Task(the ontology is Example). This task has three input param-
eters, one outcome and two subtasks. The “AND” in the box just beneath
the Task icon defines the “Characteristic Accumulation Function” (CAF)
for the task. The possible values for CAF are

1. AND require that all sub-tasks be completed before the task com-
pletes

2. OR require that at least one sub-task be completed before the task
completes

3. XOR require that at most one sub-task be completed before the task
completes

4. SUM chooses sub tasks so that the maximum value is attained

parameter1 and parameter2 are used by Action1, parameter3 is used
by Action2. Action2 has two possible outcomes, FAIL or OK and if the out-
come becomes OK, then “Agent A” executing this Task will send a KQML

220 APPENDIX D. DECAF

message to “Agent B” and wait for an answer. When “Agent B” responds,
“Agent A” will receive the answer with a provision and execute Action3.

In the the next subsection we will give a short description of how to use
the Plan Editor application to create tasks for DECAF agents.

D.3.1 Starting, Editing and Generating

The planeditor is a JAVA application and can be started in the command
prompt whith the following command1.

java planeditor

When the Plan Editor starts the GUI shown in figure D.4 will appear.

Figure D.4: DECAF Start Window

As seen from the figure, there exists one Task and one Action. It is now
possible to add another tasks or action and interconnect them by lines. To
add a new task/action choose Edit in the menubar and click on Add Item
as shown in figure D.5; then a new GUI box will appear where it is possi-
ble to select a task or an action. To draw a line between two components,
middle-click the mouse on the source component and then middle-click on
the destination component.

When all the components have been drawn, the time has come to gener-
ate skeleton code for tasks/actions. First of all save the drawed components
(this will be the plan file with the extension .lsp); then choose “File” in the
menubar and click on “Generate Code” as shown in figure D.6.

1We have used eclipse and ant to run the Plan Editor. An ant build file is located in the
delivered CD-ROM

D.3. PLAN EDITOR 221

Figure D.5: Adding and item Figure D.6: Generating code

As an example let us generate code for the task shown in figure D.3.
The Plan Editor will create two classes, namely subTask1.java and sub-
Task2.java. The generated skeleton code in subTask2.java are shown be-
neath.

import decaf . Agent ;
import decaf .KQMLmsg;
import decaf . LinkedListQ ;
import decaf . P r o v i s i o n C e l l ;
import decaf . U t i l ;
import j ava . io . * ;
import j ava . net . * ;
import j ava . u t i l . * ;

public c l a s s subTask2
{

public subTask2 ()
{

System . out . p r i n t l n ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ;
System . out . p r i n t l n ("% subTask2 Zero c o n s t r u c t o r %

<==============") ;
System . out . p r i n t l n ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ;

}

public P r o v i s i o n C e l l Action2 (LinkedListQ P l i s t , Agent Local)
{

S t r i n g message = new S t r i n g (U t i l . getValue (P l i s t , "MESSAGE")) ;
S t r i n g parameter3 = new S t r i n g (U t i l . getValue (P l i s t , "

parameter3 ")) ;

i f ()
{ return new P r o v i s i o n C e l l ("SOME STRING HERE" , " FAIL ") ; }

e lse i f ()
{ return new P r o v i s i o n C e l l ("SOME STRING HERE" , "OK") ; }

}

222 APPENDIX D. DECAF

public P r o v i s i o n C e l l Action3 (LinkedListQ P l i s t , Agent Local)
{

S t r i n g message = new S t r i n g (U t i l . getValue (P l i s t , "MESSAGE")) ;

return new P r o v i s i o n C e l l ("SOME STRING HERE" , "OK") ;
}

}

The two actions above have to be filled in with code, which will be
executed when the agent needs to run subTask2.

For further information about the Plan Editor, construction of plans for
an agent and DECAF programming, please consult [42].

Appendix E

COUGAAR

E.1 What Kind Of Problem is Suitable to a Cougaar
solution?

The problems that are suitable to a Cougaar solution include the following
[20]:

• Problem domains that entail hierarchical decomposition and tracking
of complex tasks

• Complex application domains involving integration of distributed
separate applications and data sources

• Domains involving the generation and maintenance of dynamic plans
in the face of execution

• Highly parallel applications with relatively loose-coupling and low-
bandwidth communications between parallel streams

• Domains too complex to model monolithically, best modeled by emer-
gent behavior of components

E.2 Architecture

The Cougaar architecture is shown in figure E.1. The collection of all agents
in a cougaar system is referred to as the community. Agents that share some
common functionality are categorized into groups, called communities. A
society is also modeled with a Cougaar node, which contains its own Java
virtual machine. As seen in figure E.1 agents are composed of multiple plu-
gins. Those plugins represent the agents capabilities and behaviour. Agents
can request different services that are includded in the Cougaar framework.
And several agent binders. We will not go into further detail regarding the

223

224 APPENDIX E. COUGAAR

overall architecture, but merely describe the most important functionalities
we have used, in the following sections.

Figure E.1: Cougaar Architecture

E.3 Cougaar Agents

Agent Interaction

Agents - in the context of Cougaar, interact by sending messages through
the node-level MessageTransport facilities. Agents that are part of the same
society have an identical code base, and are instances of the same class, but
this is not required, allowing long lived, very large societies to evolve over
time.

Messages received are queuried and later passed on to a LogicProvider,
that makes the appropriate changes to the blackboard or plan, though some
messages will be handled instantly if neccesary.

Plugins have their own thread of execution, which are implemented with
Java Thread pools, thus supporting a large set of agents whithout overhead
per thread. By using notifications and alarms, agents are insured to run
only when needed, reducing overhead and optimizing performance.

Timers

Every agent has a “real-time” system clock and an “execution-time” plan-
ning clock, which both have a millisecond-level of granularity.

E.3. COUGAAR AGENTS 225

Every agents has two timers: a “real-time” system clock and an “execution-
time” planning clock, these timers can be used to allow plugins to request
rescheduling at specific times.

The execution-time alarms are based on a seperate clock, and are very
useful, since they run slower or faster than one second per second, making
them useful for simulation purpose.

The execution-time planning clock can run continuously or as advanced
time-steps. Plugins have access to this functionality through the family of
“wake” methods on the standard Plugin base classes.

Alarms and timers have a millisecond-level granularity. A Plugin will be
awakened as soon as posible after the alarm instant, which are constrained
by load, other plugin function,etc.

Timers are completely local and are not intended for usage as synchroniza-
tion between agents.

ConfigFinder

Plugins and other components, can use the ConfigFinder as a relative path
to a file, and it supports “file”, “http” and “ftp”, and thereby a file-based
search facility. The ConfigFinder is not intended for usage of general-purpose
retrievement, but is appropriate for retrieving data like keys and other con-
tact information for accesing databases, wherein general-purpose informa-
tion are more appropriately stored.

E.3.1 Blackboard

The blackboard serve as local memory of an agent, wherein objects can be
added/removed/changed by the agents components, and the blackboard
defines an asynchronous publish/subscribe API. When agents receive mes-
sages from other agents, they can alter the content of their local blackboard.

Plugins uses a data structure to communicate with the agent and through
the agent with the rest of the society. The blackboard holds various objects
of interest to some or no Plugins and the agent itself. The objects on the
blackboard do not know which Plugins will process it, and if the Plugin is
local or placed in the other side of the globe.
A single global blackboard would be a considerable performance bottle-
neck, and a single point of failure.
Access to the blackboard is controlled by transactions, which behavior is

226 APPENDIX E. COUGAAR

implemented with a private internal object called a Distributor, that is re-
sponsible for coordinating intercations between Plugins, persistence and
the agent. Transactions are interpreted by a set of objects called LogicProviders.
LogicProviders add additional business-logic behavior to changes on blackboard-
level made by Plugins. LogicProviders handles messages and acts upon
them, for instance by updating the blackboard.
EnvelopeLogicProviders listens to changes on the blackboard and acts upon
them, for instance by sending messages to other agents.

Subscribers

Plugins are given a proxy object called a Subscriber, that handles most in-
teractions with the blackboard. The Distributor sends Envelopes to the Sub-
scriber, which then updates the Subscriptions with the changes or queries
the changes for later processing. Changes are made while the Plugin is idle,
and are queried when the Plugin is running.

Transactions

Blackboard transactions protect the consistency of the set of objects in the
blackboard that are visible at a given time. Transactions can be represented
as a collection of add, change and remove object messages, that should be
applied to the blackboard. It is important to notice that is not the internal
state of object, which are controlled by transactions, but instead the events
of add, change and remove objects.

Subscriptions

Subscriptions are the only way to access Plans, and they are specified by
Predicates. The entire blackboard set intializes the Subscriptions, and trans-
action Envelopes updates Subscriptions.

Predicates are implementations of the utility class UnaryPredicate and are
executed once per object change, thus predicates should be written as short
as possible. Predicate methods execute(Object) returns true if and only if
the object is part of the set specified in the predicate.

Plugins can use the function getAddedCollection(), getRemovedCollection()
and getChangedCollection(), to see if any object have been added, deleted
or changed, which is also refered to as delta list supported by Subscriptions
(IncrementalSubscription).

Subscriptions include the following classes:

E.4. COMPONENT MODEL 227

• CollectionSubscription : tracks the contents and the detailed Chang-
eReports. Also allows specification of what sort of Collection to use
internally. The internal Collection is often specified to be a class which
keeps elements sorted, hashed, or otherwise arranged for the conve-
nience of the Plugin.

• IncrementalSubscription : adds add/remove/change lists to Collec-
tionSubscription.

• Subscription : is an abstract base class which may be used to imple-
ment any other desired behavior.

Queries

Queries are functional identical to a sequence of subscribe followed by re-
trievel of the results and then to unsubscribe. Plugin processing stops while
querying is processed, and there are no guarantees that a query with Pred-
icate P and a Subscription with Predicate P will match at a given time.

Distributor

The Distributors job is to coordinate the agents messages and preserve
blackboard persistence.

The Distributor receives Transaction deltas (Envelopes) on the Plugin
side, and is responsible for updating the blackboard, and next the Sub-
scribers, which are interested in the changes. Messages are recieved from
the agents MessageTransportClient service and forwarded to the black-
board, which then invocates LogicProviders.

E.4 Component Model

Cougaar’s interface is closely modeled on the Java BeanContext API, re-
taining most of the terminology for Class and Method names, but imple-
ments the API without the UI-centric, which is required by BeanContext.

Cougaar adds additional layers to prevent abuse of component references,
such layers include the following:

• Binders between parent and child components

• ServiceProxies between server and client objects

All interaction between between components midiates by the Binder. The
Cougaar Component model is designed to function within a single Java
VM, thus there are no direct support for remote component relationships.

228 APPENDIX E. COUGAAR

Components can only have one parent component; a component that con-
tain another component is called a container, and a component can have
multiple child components and containers. Containers are required to im-
plement java.util.Collections API in order to support removing, and adding
of child components.

Appendix F

Database

In this appendix we describe the contents of the database used in our sys-
tem, and how to install the MySQL database server on windows.

F.1 Tables and their content

The database contains following tables.

• areadata has one field areaNo, which contains all the names of the lo-
cations at OSS. This table is used by the Feeder GUI window(see fig-
ure 13.4), to extract all the location names into the drop down boxes,
which are named “Location”. A part of the table is shown in table F.1

Table F.1: A part of the areadata table

• blockdata: contains the every ship block for the L203 series ship build
at OSS. This table has the following fields:

– blockNo: The unique name of the ship block

– blockWeight: The weight of the ship block measured in tons

– blockLength: The length og the ship block measured in meters

– blockBreadth: The breadth of the ship block measured in meters

– blockHeight: The height of the ship block measured in meters

229

230 APPENDIX F. DATABASE

– blockgrandBlockNo: The grandBlock to which this ship block is a
part of.

– blockFamily: The type/kind of the ship block

A part of the table is shown in table F.2

Table F.2: A part of the blockdata table

• grandblockdata contains every grand ship block for the L203 series
ships build at OSS. This table has the following fields:

– grandBlockNo: The unique name of the grand ship block

– blockWeight: The weight of the grand ship block measured in tons

– blockLength: The length og the grand ship block measured in me-
ters

– blockBreadth: The breadth of the grand ship block measured

A part of the table is shown in table F.3

Table F.3: A part of the grandblockdata table

• controlpoint contains all the nodes shown in figure 9.4. Al the nodes
in this table are related to the controlpoints in the OSS simulation
model. This table has the following fields:

– controlPointName: The unique name of the controlpoint in the
OSS simulation model

– pathName: The path in the OSS simulation model where this con-
trolpoint is placed

F.1. TABLES AND THEIR CONTENT 231

– distance: The placement length of the controlpoint from the start
of the path measured in meters

– coordX: The x-coord of the controlpoint in the OSS simulation
model, measured in meters

– coordY: The y-coord of the controlpoint in the OSS simulation
model, measured in meters

A part of the table is shown in table F.4

Table F.4: A part of the controlpoint table

• distance contains the distances between the controlpoints that are
connected directly by a path, without any intermediate controlpoints.
A part of the table is shown in figure F.5. From this table we can see

Table F.5: A part of the distance table

that CP_H411_1 has two neighboring controlpoints (CP_H411_2 and
CP_411_4), and the distances to these neighbors are also seen (18 me-
ter and 214 meter respectively).

• kamag contains the KAMAG vehicles at OSS. The table and its con-
tents are shown in table F.6. This table are used by the feeder GUI (just
as the areadate table) to extract all the KAMAG vehicle No’s into the
drop down boxes, which are named “Kamag”.

• path contains all the paths in the OSS simulation model. There are
two types of paths, straight line paths and arc paths as described in

232 APPENDIX F. DATABASE

Table F.6: The kamag table

section 14.2.2. Tabel F.7 shows a part of the table. In this table it is seen
that the first two paths are arc paths, and that the other two paths er
straight line paths.

Table F.7: A part of the path table

F.2 MySQL Server Installation Guide

In this section we will describe how to install the MySQL server software
provided in the included CD-rom1. The software is located in the MySQL
directory in the CD.

First install the MySQL server by installing the file “Setup.exe” located
in the zip file “mysql-5.0.21-win32.zip”. When the following window (fig-
ure F.1) appers during installation, choose skip signup.

Choose a root password for the MySQL server, and finish the installa-
tion.

Next install the MySQL administrator, that is the file “mysql-administrator-
1.1.9-win.msi”. With the use of the MySQL administrator login to the MySQL
database as the root user and add the user “oss” with the password “sso”.
Then add the “oss” schema and assign all available privileges to this schema.

To connect to the database from the Middleware we have to use a ODBC
driver. In the following section the setup of the ODBC driver will be ex-
plained.

1The software can also be downloaded from MySQL’s homepage www.MySQL.org

F.2. MYSQL SERVER INSTALLATION GUIDE 233

Figure F.1: MySQL Sign Up Window

F.2.1 Setting up the MySQL ODBC Connector

Install the odbc software; that is the file “mysql-connector-odbc-3.51.12-
win32.msi”. To set up the MySQL ODBC Driver follow these steps:

1. Open the Control Panel | Administrative Tools | Data Sources (ODBC)
window (figure F.2) and click the Add button.

Figure F.2: Data Sources Window

2. Select “MySQL ODBC 3.51 Driver” and click the Finish button (figure
F.3)

234 APPENDIX F. DATABASE

Figure F.3: Create New Data Source Window

3. In the Connector/ODBC window, enter the values as seen in figure
F.4 and as password enter “sso”.

Figure F.4: Connector/ODBC Window

4. Click the Test button and it should succeed.

F.2.2 Howto insert Ship Block Data into Database

When we asked for data for all the ship blocks for a ship we got handed out
an excel file; “L203 Blockdata Rev F.xls”. We extracted the needed informa-
tion for our system from that file into the the file “L203 Blocks.xls” and

F.2. MYSQL SERVER INSTALLATION GUIDE 235

converted it into XML2. To put the information for the ship blocks into the
database use the Feeder as shown in figure F.5; then choose the file “L203
Blocks.xml” and click Open. The same procedure can be followed to insert
the kamags and locations into the database. The kamags are located in the
file “kamags.xml”, the locations in the file “locations.xml”.

Figure F.5: Adding ship blocks from XML file

2All the excel and xml files are located in the OSSData directory in the CD

Appendix G

Using Automod

This Appendix serves to give a short overview on the features we have
used in Automod. Here is everything one needs to know in order to build a
simulation model in Automod like the one we have build. The information
in this appendix only concerns how it works, but not does not describe
what it is. We refer to the Automod manual for en overall describtion of
Automods functionality.

G.1 Getting started

G.1.1 New project

First we should open Automod as seen in figure G.1, then we choose “New”
in the “File” menu and select a name for your model.

Once a new model has been created you will see the “Process Sys-
tem”(figure G.2) wherein you define, create, modify, delete and use dif-
ferent types in Automod.

G.1.2 Saving Your Project Correctly

There are two ways of saving your project; either use “save” or “export”.
Use “save” when you have temporary changes in your project, which you
are not sure you want to keep; mostly for testing purpose. Use “export”
when you have made permanent changes to your model, you want to keep.
When you export your model, Automod saves it in the process. An ex-
ported model can be transfered to another machine, and it will be identical
to the original model. If you just choose to save the model, it can not be
transfered to another computer.

236

G.2. LOADS 237

Figure G.1: Automod Environment Figure G.2:
Process
system

G.1.3 Saved project

Returning to your previous work; you want to open your model, either you
go to your “dir” archieve, which is your temporary saved project, or you go
to your “arc” archieve, which is your permanent saved model. Remember
to open the correct model.

G.2 Loads

Loads are dynamic elements in the simulation. We can create different load
types and attach attributes to loads. Different load types helps distinguish
between different product types, such as ship blocks and raw material.

Choose “Load” from the “Process System” and the window seen in figure
G.3 will appear. On the left side you can define new load types, and on the
right side you can define load attributes. All load types will have the same
attributes, so its not like object oriented programming, where you would
define a block object with some attributes, and a material object with some
other attributes. The attributes are local to each load, thus changing the
value for a load attribute will not change every loads attribute.
To define a new load type press the corresponding “new” button seen in
figure G.3, and the window shown in figure G.4 will appear, wherein the

238 APPENDIX G. USING AUTOMOD

Figure G.3: The loads window

name of the type is defined, with other information such as which process
will handle the load at creation. We now must press the button “New Cre-
ation”, wherein we specify:

• Generation Limit : How many units of this load you want to produce

• Split :

• First Process : What process should handle the load at creation

• Distribution : Different time distribution, e.g. constant time, creates
new loads after a constant amount of time.

• Mean : the time unit for load distribution, e.g. 5 seconds or 10 hours

Figure G.4: Defining a load type

You must choose the process which should handle the load at creation, by
pressing the “First Process” button a list with all process in the system will
appear. See section G.3 for information on how to design a process.

G.3. PROCESS 239

G.3 Process

A process is the virtual control or handling of loads. Every load must be in
a process in order to exist. Loads enters a process, herein they execute some
instructions, and finally they leave the process. A load can either be sent to
another process, or sent to “die”; “die” is a standard process that kills the
load, and if the programmer do not specify another process to sent the load
to before it leaves, the load is automatically sent to die by Automod.

Here is an example of how to write process logic:

begin P_Firs tGr inder a r r i v i n g procedure
move i n t o Q_FirstGrinder_wait / * Move i n t o t h e w a i t i n g queue

* /
move i n t o Q_FirstGrinder / * Move i n t o t h e p r o c e s s i n g

queue * /
get R_Firs tGrinder / * Claim t h e g r i n d e r * /
use R_Operator for n 20 , 3 sec / * Load ing * /
wait for 4 min / * Gr inding * /
use R_Operator for e 30 sec / * Unloading * /
f r e e R_Firs tGrinder / * F r e e t h e g r i n d e r * /
send to P_SecondGrinder / * Send t o t h e nex t p r o c e s s * /

end

As can be seen from the code example above, we use prefix in front of
names, such that “Q_”, “R_”, “P_”, “L_” indicates a queue, resource, pro-
cess or load.

G.4 Queues

Queues are used as containers for loads, thus loads can move in and out
of queues. To define a queue select the “Queues” button from the “Process
System” and the Queues window seen in figure G.5 will appear, wherein
every queue in your system will be listed. Now you press the “New” but-
ton and the window for creating queues appear as seen in figure G.6, where
you fill in information like “Name”, “Number of queues” and “Default Ca-
pacity”, which is the amount of loads that can reside in the queue. If you
want to design some container for your queue, e.g. if you require som spe-
cial way of placing the loads in the queue, then select the “New” button
shown in figure G.6, where you can chose your own cell size, and how you
want the loads to be placed, e.g. in a horizontal or vertical direction.

240 APPENDIX G. USING AUTOMOD

Figure G.5: The queues window Figure G.6: Define a queue

G.5 Variables

To store information in your simulation logic, you can take advantage of
variables, which can be any type in Automod like strings, integers, Load
pointers, queue pointers, or a type you define on your own. Variables in
Automod are global for all objects/entities, which means that if you change
this variable from one process, the value is changed for every process in
your system, thus variables must be handled with great caution, when ac-
cessing a variable from multiple places, which could result in data incon-
sistence. For creating a variable press “Variables” in the “Process System”
and the window in figure G.7 will appear.

Figure G.7: Variables

G.6. FUNCTIONS 241

G.6 Functions

To make a function press “Functions” in the process system. The windows
in figure G.8 will appear. There is a combo box with “user” written in it
as default, which means that it shows the functions you have defined, the
other fields in the combo box are build in functions, that can be used in
your logic. Press “New” to create a new function and fill in the information
seen in figure G.9, that is “Name”, which should start with prefix “F_” dur-
ing to Automod notation, the “Type” that the function should return when
done executing, and you will have to define the parameters that should be
passed with the function call. Remember to think about the order in which
you declare the function parameters, since they define the order of param-
eters, when you call the function later on.

Figure G.8: The function window

Once you have declared a function you will have to write the logic in it,
which is done by making a source file as desribed in section G.7. If you
have called your function “F_calculate” the source file name should be
“F_calculate.m”.

G.7 Source files

Source files is were all the fun stuf happens; if you are a programmer that
is. Unfortunately Automod isn’t really made for programmers, but more

242 APPENDIX G. USING AUTOMOD

Figure G.9: Define a function

for production engineers , who don’t have much experience with program-
ming, this means that a lot of freedom has been taken from the developer,
and a simple thing like declaring a new function is very difficult. You are
not allowed just to write all your code in some source files and then com-
pile them to run the program, instead you are forced to interact with the
“Process System” GUI to make anything happen.

For making a new source file, press the “Source Files” button in the process
system, and type the name of the source file in the box seen in figure G.11,
e.g. “F_calculate.m” and remember to put the extention “.m” on the name,
otherwise the function will not work.

Figure G.10: The source file win-
dow

Figure G.11: Declare function
name

Once you have declared the name of the source file, press the “Edit” button,
resulting in the opening of an editor as seen in figure G.12, wherein you
write the logic for your function or process. The source file must contain
the following for a function declaration:

begin F _ c a l c u l a t e funct ion

G.8. PLACING YOUR GRAPHICS 243

put some i n s t r u c t i o n s here

return 1
/ * t h i s r e t u r n i s r e q u i r e d and s h o u l d match t h e r e t u r n t y p e in

your f u n c t i o n d e c l a r a t i o n * /

end

Figure G.12: Automod Editor

When writing a source file for a process, you only have to specify a begin
and an end command, as seen below:

begin
put some i n s t r u c t i o n s here

end

Note that is is not possible to close down the editor when there are errors,
which means that can’t proceed making other changes somewhere else in
the Automod environment, which can be quite annoying, again limiting
the developers creativity, but ensuring that no mistakes are made before
closing down, can be useful for new developers.

G.8 Placing your graphics

This section guides you to placing your graphics after creating elements,
such as queues, which requires visualization in your simulation model.

244 APPENDIX G. USING AUTOMOD

Select “Queue” from the process system (figure G.2), then select a queue
from the queue list (figure G.5), and select “edit”

Appendix H

Automod ActiveX API

In this chapter the syntax for the Automod ActiveX methods will be shown.

H.1 CallFunction method

Purpose
Use the CallFunction method with the AutoMod runtime object to call

a user-defined AutoMod function in the model during a simulation.

Syntax
amx.CallFunction(funcName, params)

The syntax elements are defined as follows:

Syntax Element Description
amx An object variable that refers to the AutoMod runtime

object.
CallFunction The name of the method.
funcName A string that indicates the name of the function in the

AutoMod model that you want to call.
params An array of variants that define the arguments required

by the user-defined AutoMod function. The array must
have as many values as the AutoMod function has
arguments (any extra values are ignored). The variant
values are automatically converted to the type of the
associated argument in the AutoMod function in the
model.
Note: The params syntax element is required. If the
AutoMod function you are calling has no arguments, you
must still define an empty array.

Table H.1: Description of syntax elements for CallFunction method

245

246 APPENDIX H. AUTOMOD ACTIVEX API

Return value
A variant that indicates the return value of the user-defined AutoMod

function. The variant value is an integer, real, or string, depending on the
type of value returned by the AutoMod function; if the function returns a
value other than an integer, real, or string (for example, a resource pointer
or motor pointer) then the value is converted to a string before it is returned
from the CallFunction method. The CallFunction method does not return a
value until the AutoMod function has returned a value.

H.2 CloseModel method

Purpose
Use the CloseModel method with the AutoMod runtime object to close

a simulation.

Syntax
amx.CloseModel()

The syntax elements are defined as follows:

Syntax Element Description
amx An object variable that refers to the AutoMod runtime

object.
CloseModel The name of the method.

Table H.2: Description of syntax elements for CloseModel method

Return value
The CloseModel method does not return a value.

H.3 DisplayView method

Purpose
Use the DisplayView method with the AutoMod runtime object to change

the view in the simulation.

Syntax
amx.DisplayView(viewName)

The syntax elements are defined as follows:

H.4. GETVARIABLE METHOD 247

Syntax Element Description
amx An object variable that refers to the AutoMod runtime

object.
DisplayView The name of the method.
viewName A string that indicates the name of the AutoMod view

that you want to display. (The view must also be defined
in the AutoMod model to be displayed during the
simulation.)

Table H.3: Description of syntax elements for DisplayView method

Return value
The DisplayView method does not return a value.

H.4 GetVariable method

Purpose
Use the GetVariable method with the AutoMod runtime object to get

the current value of an AutoMod variable in the simulation.
Note: If the indicated AutoMod variable does not exist, a message is

printed to the Message window and the method throws an exception.

Syntax
amx.GetVariable(varName)

The syntax elements are defined as follows:

Syntax Element Description
amx An object variable that refers to the AutoMod runtime

object.
GetVariable The name of the method.
varName A string that indicates the name of the AutoMod variable

from which you want to obtain a value.

Table H.4: Description of syntax elements for GetVariable method

Note: If you are getting the value of an arrayed variable, there cannot be
any spaces in the index of the array element from which you are getting a
value. For example, the following GetVariable method is defined correctly:

Call amx.GetVariable("Vrate(1,3)")
The following GetVariable method is defined incorrectly:

Call amx.GetVariable("Vrate (1 , 3)")

248 APPENDIX H. AUTOMOD ACTIVEX API

Return value
A variant that indicates the value of the AutoMod variable. The variant

value is an integer, real, or string, depending on the type of value returned
from the AutoMod variable; if the variable is not one of these types (for
example, an entity pointer), then the value is converted to a string before it
is returned.

H.5 OpenLogFile method

Purpose
Use the OpenLogFile method with the AutoMod runtime object to cre-

ate a diagnostic file for debugging. The log file contains diagnostic infor-
mation that is generated during the simulation; it is useful for debugging
errors associated with the custom interface.

You can call the OpenLogFile method before the OpenModel method to
create a file containing all diagnostic information generated during the run.

If an old log file with the same name already exists, it is replaced when
the new file is generated.

Syntax
amx.OpenLogFile(fileName)

The syntax elements are defined as follows:

Syntax Element Description
amx An object variable that refers to the AutoMod runtime

object.
OpenLogFile The name of the method.
fileName A string that indicates the path and name of the

diagnostic file. If you do not specify an absolute path, the
location where the file is saved depends on the scripting
environment you are using to create the custom interface.
See the documentation that came with your scripting
environment for more information.

Table H.5: Description of syntax elements for OpenLogFile method

Return value
The OpenLogFile method does not have a return value.

H.6 OpenModel method

Purpose

H.6. OPENMODEL METHOD 249

Use the OpenModel method with the AutoMod runtime object to open
a simulation.

Important: The method returns immediately, however, you must wait
until the simulation has finished opening before accessing any methods or
properties; otherwise, they will fail and throw an exception. The OnModel-
Ready event is sent when the simulation has finished opening.

Syntax
amx.OpenModel(modelName, modelPath, cmdLineArgs, ASIEnvVariable,

reserved)

The syntax elements are defined as follows:

Syntax Element Description
amx An object variable that refers to the AutoMod runtime

object.
OpenModel The name of the method.
modelName A string that indicates the name of the AutoMod model

that you want to run (you do not need to include the .exe
extension).

modelPath A string that indicates the absolute path to the directory
containing the AutoMod model that you want to run (the
path does not need to include the model name, which is a
separate argument). This value cannot be null (you must
define the model path).

cmdLineArgs A string that indicates the command line options you
want to use for running the model (for a complete list of
the available command line options, see "Using command
line options" in the "Running a Model" chapter in volume
1 of the AutoMod User’s Guide). If this value is null, the
simulation runs without any command line options; this
is the same as if the model were run from the standard
AutoMod interface.
Note: Command line options must be defined exactly as
they are from a command prompt (the options must be
preceded by a hyphen).

ASIEnvVariable A string that indicates an absolute path to the build of the
AutoMod software that you want to use for running the
model. If this value is null, the software uses the most
recently installed build of the same version of the
AutoMod software as the type library you have
referenced.

reserved A variant that is reserved for future use; the value must
be Nothing.

Table H.6: Description of syntax elements for OpenModel method

250 APPENDIX H. AUTOMOD ACTIVEX API

Return value
The OpenModel method does not have a return value.

H.7 SetVariable method

Purpose
Use the SetVariable method with the AutoMod runtime object to set the

value of an AutoMod variable in the simulation.

Syntax
amx.SetVariable(varName, value)

The syntax elements are defined as follows:

Syntax Element Description
amx An object variable that refers to the AutoMod runtime

object.
SetVariable The name of the method.
varName A string that indicates the name of the AutoMod variable

for which you want to set a value.
Note: If you are setting an arrayed variable, there cannot
be any spaces in the index of the array element for which
you are setting a value. For example, the following
SetVariable method is defined correctly:
Call amx.SetVariable("Vrate(1,3)", 10)
The following SetVariable method is defined incorrectly:
Call amx.SetVariable("Vrate (1 , 3)", 10)

value A variant that defines the value to which the variable is
set. The variant value must be an integer, real, or string,
depending on the type of the AutoMod variable. The
AutoMod software attempts to convert the variant value
to the correct type for the variable; an exception results if
the conversion is not possible or if the variable does not
exist.

Table H.7: Description of syntax elements for SetVariable method

Return value
The SetVariable method does not have a return value.

Appendix I

Middleware Classes

In this appendix we will describe each class in the middleware. We will
describe not describe the trivial attributes in the classes (the shaded ones);
these attributes are GUI-elements, and some of them have action listeners
attached and implemented in methods wich will be described.

I.1 Program

The Program class is the one which starts the mid-
dleware application. It contains only the one method:
main. This method instantiates an object from the Mode
class, wherein the user can select which mode the mid-
dleware shall be run in.

I.2 Mode

The Mode class contains two methods for han-
dling the event, when a user selects one of the two
possible modes, namely feeder mode or socket mode.
A description of these methods are given next:

• Mode: The constructor of the class, which will
start an show the GUI seen in figure 13.2.

• feederModeButton_Click: Will hide the Mode-
selection-GUI shown in figure 13.2 and start
the middleware in feeder mode (see figure 13.4)

• socketModeButton_Click: Will hide the Mode-
selection-GUI shown in figure 13.2 and start
the middleware in socket mode (see figure 13.5)

251

252 APPENDIX I. MIDDLEWARE CLASSES

I.3 Feeder

The Feeder class has tree non-GUI at-
tributes which are:

* amodRunX: an object instance of the class
AmodRunX, which contains the Auto-
Mod ActiveX Object.

* database: an object instance of the class
Database, which contains data about ship
blocks, locations and KAMAGs.

* instance: The Feeder class is a singleton
class and the instance variable holds this
single instance of the Feeder object.

The methods in the Feeder class
(shown on next page) does following:

• button_Click_AddShipBlock: This method
is executed when a user clicks the but-
ton “Add Ship Block” (see figure 13.4).
It extracts the Block No and Location
from the drop down boxes just above
the button; and calls the method move-
ShipBlockToQueue.

• button_Click_BeamKamag: This method
is executed when a user clicks the but-
ton “Beam Kamag” (see figure 13.4). It
extracts the KAMAG No and Location
from the drop down boxes just above
the button; and calls the method beamKa-
mag located in the AmodRunX class.

• button_Click_DriveTo: This method is
executed when a user clicks the button
“Drive To” (see figure 13.4). It extracts
the KAMAG No and Location from the
drop down boxes just above the but-
ton; and calls the method driveToLoca-
tion located in the AmodRunX class.

I.3. FEEDER 253

• button_Click_PickUp: This method is
executed when a user clicks the button
“PickUp Ship Block” (see figure 13.4). It
extracts the KAMAG No and Location
from the drop down boxes just above
the button; and calls the method pickU-
pLoad located in the AmodRunX class.

• button_Click_PutDown: This method
is executed when a user clicks the but-
ton “PickDown Ship Block” (see figure
13.4). It extracts the KAMAG No and
Location from the drop down boxes just
above the button; and calls the method
putDownLoad located in the AmodRunX
class.

• button_Click_StartSimulation: This method
is executed when a user clicks the big
button “Start Simulation” (see figure 13.4).
It will enable all the other buttons which
are disabled at first and set the state of
the simulation to not-paused, that is the
simulation will start. Another click on
the same button will pause the simula-
tion, and yet another click will resume
the simulation and so on.

• dialog_AddKamags_Ok: This method is executed when the user has
selects an XML file containing KAMAGs and details about these where-
after he presses OK in the file dialog. This method will then process
the XML file by extracting all the data in it, and add it to the database.

• dialog_AddLocations_Ok: This method is executed when the user
has selects an XML file containing locations at OSS and details about
these whereafter he presses OK in the file dialog. This method will
then process the XML file by extracting all the data in it, and add it to
the database.

• dialog_AddShipBlocks_Ok: This method is executed when the user
has selects an XML file containing ship blocks at OSS and details
about these whereafter he presses OK in the file dialog. This method
will then process the XML file by extracting all the data in it, and add
it to the database.

254 APPENDIX I. MIDDLEWARE CLASSES

• dialog_OpenModel_Ok: This method is executed when the user has
selects an exe file which is the AutoMod compiled simulation model,
whereafter he presses OK in the file dialog. This method will then
instantiate a AmodRunx object (see description in AmodRunX class).

• Feeder: This is the constructor of the Feeder class, which initializes
the GUI components.

• Feeder_FormClosed: Is executed when the user closes the Feeder GUI
window with the cross in the upper right corner of the GUI window.
This will close the GUI and exit the middleware application.

• getInstance: The Feeder class is a singleton and this method is used
to get this single object.

• getNextData: Used to read data out of XML file.

• initDropBoxBlocks: Reads all ship blocks from database and inserts
them in a given drop down box in the Feeder GUI.

• initDropBoxKamags: Reads all KAMAGs from database and inserts
them in a given drop down box in the Feeder GUI.

• initDropBoxLocations: Reads all locations from database and inserts
them in a given drop down box in the Feeder GUI.

• initFeederElements: Uses the three methods above, to insert data to
the dropdown boxes in Feeder GUI.

• menu_Click_About: Shows information about the current state of the
middleware application and version number.

• menu_Click_AddKamagsFromXML: This method is executed when
the user clicks on the menu item “Add KAMAGs from XML file” in
the “Options” field in the menu bar in the Feeder GUI. It will open
a file dialog where the user will be able to select and XML file from
the file system. This XML file will then be processed by the method
dialog_AddKamags_Ok when the user presses OK in the file dialog.

• menu_Click_AddKamagsFromXML: This method is executed when
the user clicks on the menu item “Add Locations from XML file” in
the “Options” field in the menu bar in the Feeder GUI. It will open
a file dialog where the user will be able to select and XML file from
the file system. This XML file will then be processed by the method
dialog_AddLocations_Ok when the user presses OK in the file dialog.

• menu_Click_AddShipBlock: This method is executed when the user
clicks on the menu item “Add Ship Block” in the “Options” field in

I.3. FEEDER 255

the menu bar in the Feeder GUI. It will open a new GUI window
where the user can enter data to a new ship block, which then will be
inserted in the database.

• menu_Click_AddShipBlocksFromXML: This method is executed when
the user clicks on the menu item “Add Ship Blocks from XML file” in
the “Options” field in the menu bar in the Feeder GUI. It will open a
file dialog where the user will be able to select and XML file from the
file system. This XML file will then be processed by the method dia-
log_AddShipBlocks_Ok when the user presses OK in the file dialog.

• menu_Click_CloseModel: Closes the open AutoMod simulation model,
when the user clicks on the menu item “Close Model” in the “File”
field in the menu bar in the Feeder GUI.

• menu_Click_Disabled: Disables the animation in the opened Auto-
Mod simulation model, when the user clicks on the menu item “Dis-
abled” in the “Animation” field in the menu bar in the Feeder GUI.

• menu_Click_Enabled: Enables the animation in the opened Auto-
Mod simulation model, when the user clicks on the menu item “En-
abled” in the “Animation” field in the menu bar in the Feeder GUI.

• menu_Click_Exit: This will close the GUI and exit the middleware
application, when the user clicks on the menu item “Exit” in the “File”
field in the menu bar in the Feeder GUI.

• menu_Click_GetTime: Show the current time in the AutoMod simu-
lation. Is executed when the user clicks on the menu item “Get Sim-
ulation Time” in the “Options” field in the menu bar in the Feeder
GUI.

• menu_Click_OpenModel: Is executed when the user clicks on the
menuitem “Open Model” in the “File” field in the menu bar in the
Feeder GUI. This method will open a file dialog where the user can
select an AutoMod compiled simulation model file with exe exten-
sion.

• menu_Click_PlaceBlocksKamags: Used to initialize the simulation
model, by inserting ship blocks and KAMAGs at appropriate loca-
tions before simulation start.

• moveGBShipBlockToQueue: Used to insert a ship Grand block to a
location in the simulation.

• moveShipBlockToQueue: Used to insert a ship block to a location in
the simulation.

256 APPENDIX I. MIDDLEWARE CLASSES

• simSpeedBox_ValueChanged: Is executed whenever the speed of the
simulation is changed in the Animation Display Step Box. This will
increase or decrease the simulation speed in the AutoMod simulation
model.

I.4 SocketComm

The SocketComm class has tree non-GUI at-
tributes which are:

* amodRunX: an object instance of the class Amod-
RunX, which contains the AutoMod ActiveX
Object.

* exitThread: A boolean used to exit the thread
which listens to incoming socket connections.

* instance: The SocketComm class is a single-
ton class and the instance variable holds this
single instance of the SocketComm object.

* networkStream: Used by the streamReader
and streamWriter to receive or send socket mes-
sages.

* port: Defines the socket comunication port.

* serverIP: Defines the socket comunication IP
address, which will be “127.0.0.1” if middle-
ware application and the MAS runs on localy.

* socketForClient: Used to check whenever af
MAS connects to the middleware socket server
and to initialize the networkStream.

* streamReader: Used to receive a socket mes-
sage.

* streamWriter: Used to send a socket message.

* tcpListener: The socket server itselft, that is the middleware TCP/IP
socket server which accepts connections from the MAS.

* thread: A thread that continually listens for socket connections.

I.4. SOCKETCOMM 257

* threadStopped: A boolean indicating whether the thread is stopped,
that is whether the TCP/IP socket server has stopped listening. This
is necessary in exitting the middleware application, because the socket
server has to be stopped before the middleware application can be ex-
ited, or else there will occur an exception.

The methods in the SocketComm class (shown on previos page) and
their descriptions are listed below. But first we will mention that methods
with blue color are executed from the MAS, by the help of sockets and re-
flection. The methods with green color indicate methods that are executed
from the simulation by AutoMod’s activeX runtime object and reflection.

• addTimeEvent: Executes the addTimeEvent defined in the AmodRunX
class. See this method for further details.

• arrivedToDestination: This method informs the MAS, that a specific
KAMAG has arrived to specific location in the simulation model. This
information is sent by the a socket message.

• blockDroppedDown: This method informs the MAS, that a specific
KAMAG has dropped a ship block to specific location in the simula-
tion model. This information is sent by the a socket message.

• blockPickedUp: This method informs the MAS, that a specific KA-
MAG has picked up a ship block from a specific location in the simu-
lation model. This information is sent by the a socket message.

• closeSocket: Closes all streams and connections and finally the socket
server.

• dialog_OpenModel_Ok: This method is executed when the user has
selects an exe file which is the AutoMod compiled simulation model,
whereafter he presses OK in the file dialog. This method will then
instantiate a AmodRunx object (see description in AmodRunX class).

• driveToLocation: Executes the driveToLocation defined in the Amod-
RunX class. See this method for further details.

• getCPDistance: Is used by the MAS to calculate the distance between
two “Control Points”, that is between two locations at OSS.

• getInstance: The SocketComm class is a singleton and this method is
used to get this single object.

• initSocket: Sets the IP and Port number of the TCP/IP socket server
and starts the server for listening to incoming connections.

258 APPENDIX I. MIDDLEWARE CLASSES

• listenSocket: Listens for incoming connections from the MAS. When
MAS connects, then this method receives a socket message, which
will be parsed to a method call with a method name and parameters,
which will be invoked with the help of reflection if the method exists.

• menu_Click_CloseModel: Closes the open AutoMod simulation model,
when the user clicks on the menu item “Close Model” in the “File”
field in the menu bar in the SocketComm GUI.

• menu_Click_Exit: This will close the GUI and exit the middleware
application, when the user clicks on the menu item “Exit” in the “File”
field in the menu bar in the SocketComm GUI.

• menu_Click_OpenModel: Is executed when the user clicks on the
menuitem “Open Model” in the “File” field in the menu bar in the
SocketComm GUI. This method will execute the method openAuto-
modModel beneath and start the TCP/IP socket server.

• openAutomodModel: Is executed from the menu_Click_OpenModel
method. This method will open a file dialog where the user can select
an AutoMod compiled simulation model file with exe extension.

• pauseSimulation: Pauses the simulation with the setPauseState method
located in the AmodRunX class.

• pickUpBlock: Executes the pickUpBlock defined in the AmodRunX
class. See this method for further details.

• placeBlocksKamags: Executes the placeBlocksKamags defined in the
AmodRunX class. See this method for further details.

• putDownBlock: Executes the putDownBlock defined in the Amod-
RunX class. See this method for further details.

• setMASClock: Used to synchronize MAS clock with AutmoMod Sim-
ulation clock.

• SocketComm: The constructor of the SocketComm class. Initializes
the SocketComm GUI, the boolean attributes and the TCP/IP socket
server.

• SocketComm_FormClosed: Is executed when the user closes the Sock-
etComm GUI window with the cross in the upper right corner of the
GUI window. This will close the GUI and exit the middleware appli-
cation.

• startSimulation: Starts the simulation with the setPauseState method
located in the AmodRunX class.

I.5. AMODRUNX 259

• timeEvent: Notifies the MAS, that a specific time has been reached.
This timeevent was added to be generated with the help of the method
addTimeEvent.

• trigger: Triggers the MAS, whithin some prior specified time inter-
vals, so that the D-Planner can coordinate and distribute transporta-
tion tasks at these trigger intervals.

I.5 AmodRunX

The AmodRunX class has following attributes:

* amx: Is the AutoMod Runtime Object, which
is used to execute AutoMod simulation func-
tions, receive AutoMod simulation events and
to set/get variables from the AutoMod simu-
lation, with the use of the AutoMod ActiveX
component.

* database: an object instance of the class Database,
which contains data about ship blocks, loca-
tions and KAMAGs.

* feeder: If middleware is run in Feeder mode,
then this attribute will reference to the feeder
object.

* feederMode: A constant string, used to check
which mode the middleware is in.

* mode: A string which will be set to either the
attribute feederMode or socketMode depend-
ing on which mode the middleware is run in.

* modelReady: A boolean which represents when
the simulation model read and ready.

* socketComm: If middleware is run in Socket
mode, then this attribute will reference to the
socketComm object.

* socketMode: A constant string, used to check
which mode the middleware is in.

The AmodRunX methods are:

• addTimeEvent: Used to add a specific time into the simulation, so
that the simulation will generate a timeevent at this specified time.

260 APPENDIX I. MIDDLEWARE CLASSES

• AmodRunX: The constructor of the class, which

1. sets the mode to either feeder mode or socket mode

2. instantiates the database object

3. instantiates the amx object

4. add event listeners to the amx object

5. opens the simulation model with the amx object.

• amx_OnModelReady: Executed when the simulation model is opened
and ready. This method will enable the animation of the simulation,
and set the modelready attribute to true, to indicate that the simula-
tion is ready to be run.

• amx_OnUserEvent: Receives events from the simulation model, in
the form of a comma separated string, and executes the method exe-
cuteMethod (see this method for further description).

• arrivedToDestination: If middleware is run in socket mode, then this
method will inform the MAS, whenever a KAMAG arrives to a loca-
tion in the simulation model.

• beamKamag: Beams a KAMAG in the simulation model from loca-
tion to another location. Used when the simulation model is initial-
ized to place KAMAGs.

• blockDroppedDown: If middleware is run in socket mode, then this
method will inform the MAS, whenever a KAMAG has dropped a
ship block to a location in the simulation model.

• blockPickedUp: If middleware is run in socket mode, then this method
will inform the MAS, whenever a KAMAG has picked up a ship block
from a location in the simulation model.

• closeModel: sets the modelReady attribute to false and closes the amx
object, that is closes simulation model.

• driveToLocation: Calls an AutoMod function in the simulation model,
which informs a KAMAG to drive to a location in the simulation
model.

• executeMethod: Receives af comma separated string from the method
amx_OnUserEvent which will be parsed to a method with parame-
ters, and invoked by the help of reflection.

• getAnimate: Returns an integer value indication whether the anima-
tion in the simulation model is enabled or not.

I.5. AMODRUNX 261

• getCPDistance: Given two locations in the simulation model, this
method will return the distance between them, by the use of a func-
tion from the AutoMod simulation model.

• getPauseState: Returns a boolean value indicating whether the sim-
ulation is running or not.

• getProcessPtrFromCP: A method which is used from the simulation
model to get the ProcessPtr variable, which belongs to the given Con-
trol Point (location).

• getQueuePtrFromCP: A method which is used from the simulation
model to get the QueuePtr variable, which belongs to the given Con-
trol Point (location).

• getTime: Returns the simulation model time (absolute clock, which
as default is 0 at simulation start).

• isModelReady: Return a true/false indicating whether the simula-
tion model is ready or not.

• moveShipBlockToQueue: This method adds a ship block to a loca-
tion in the simulation model. To use this method the following argu-
ments has to be given:

1. Location

2. Block No

3. Block Weight

4. Block Length

5. Block Breadth

6. Block Height

7. Grand Block No

8. Block Family

The arguments 3-8 can be found in the database, if the ship block with
identification number “argument 2” exists in the database.

• pickUpBlock: Calls an AutoMod function in the simulation model,
which informs a KAMAG to pick up a ship block from the KAMAGs
current location in the simulation model.

• placeBlocksKamags: Used to initialize the simulation model. Given
two comma separated strings; one of ship blocks/locations and an-
other of KAMAGs/locations, this method places the ship blocks and
KAMAGs at the specified locations in the simulation model.

262 APPENDIX I. MIDDLEWARE CLASSES

• putDownBlock: Calls an AutoMod function in the simulation model,
which informs a KAMAG to put down a ship block to the KAMAGs
current location in the simulation model.

• setAnimate: Enables/Disables the animation in the simulation.

• setDisplayStep: Sets the displaystep (Simulation speed), with a nu-
meric value.

• setMASClock: If middleware is run in socket mode, then this method
will inform the MAS about the clock in the simulation at periodic
intervals, so that the MAS clock is synchronized with the simulation
clock.

• setPauseState: Pauses/resumes the simulation.

• setTriggerTime: Sets a time in the simulation by the use of a Auto-
Mod function, so that a timeevent is generated at that time.

• timeEvent: If middleware is run in socket mode, then this method
will inform the MAS that a specific time has been reached. This time
was formerly set by the MAS, which wanted to know when this time
was reached.

• trigger: If middleware is run in socket mode, then this method will
trigger the MAS, so that the planning agent (D-planner) can calcu-
late/coordinate transportation requests from C-planners.

I.6 Database

The Database class has following attributes:

* ConStr: Is the Connection String, which con-
tains following information:

1. Which driver to use to connect to the databse,
in our case a MySQL ODBC driver.

2. The database server IP, in our case “lo-
calhost” (could also be a remote database
server)

3. The database port, in our case 3306

4. The database schema, in our case oss

5. The database username, in our case oss

6. The database password, in our case sso

I.6. DATABASE 263

7. An a database option, which is set to 3
(a default value).

* OdbcCom: Used to execute SQL commands.

* OdbcCon: Uses the OdbcStr to connect to the database, and is used
by the OdbcCom to connect to the database.

* OdbcDR: When OdbcCom executes a SQL query, then the result is
stored in this attribute.

The Database method are:

• closeDBConnection: Closes the database connection

• getKamagList: Returns all the KAMAGs at OSS from the databse in
a list.

• getLocationList: Returns all the locations at OSS from the databse in
a list.

• getShipBlock: Returns a ship block at OSS from the databse given af
ship block No.

• getShipBlockList: Returns all the ship blocks at OSS from the databse
in a list.

• insertKamag: Adds a KAMAG to the database.

• insertKamagList: Adds a list of KAMAGs to the database.

• insertLocation: Adds a location to the database.

• insertLocationList: Adds a list of locations to the database.

• insertShipBlock: Adds a ship block to the database.

• insertShipBlockList: Adds a list of ship blocks to the database.

• openDBConnection: Opens a database connection.

264 APPENDIX I. MIDDLEWARE CLASSES

I.7 ShipBlock

The ShipBlock class has following attributes:

* blockBreadth: The breadth of the ship block.

* blockFamily: The family of the ship block.

* blockHeight: The height of the ship block.

* blockLength: The length of the ship block.

* blockNo: The block No of the ship block.

* blockWeight: The weight of the ship block.

* grandBlockNo: The grand block No to which
this ship block belongs.

The ShipBlock methods are:

• getBlockBreadth: Returns the breadth of the ship block.

• getBlockFamily: Returns the family of the ship block.

• getBlockHeight: Returns the height of the ship block.

• getBlockLength: Returns the length of the ship block.

• getBlockNo: Returns the block No of the ship block.

• getBlockWeight: Returns the weight of the ship block.

• getBlockGrandBlockNo: Returns the grand block No to which this
ship block belongs.

• ShipBlock: The exists two constructors of the class. One for a ship
block and another for a grand ship block, which is a collection of ship
blocks.

I.8. COMMASTRINGPARSER 265

I.8 CommaStringParser

The CommaStringParser class has following at-
tributes:

* splitter: Is a comma character, to split comma
strings.

The CommaStringParser methods are:

• getArgumentAtPosition: Returns an argument in the comma string,
the position has to bigger than 1 and less than the actual arguments.

• getArguments: Returns all the arguments in the comma string.

• getMethodName: Returns the method name in the comma string,
which is the first element in the comma string.

• getNumOfArguments: Returns the number of arguments in the comma
string.

Appendix J

Journal

Date Duration Person Responsibility Subject of
Meeting

27/01-2006 5 hours Niels J.
Jacobsen

External
Supervisor

Introduction
and tour at
Lindø

27/01-2006 1 hour Henning K.
Jensen

B-planner Intro to B-plan

27/01-2006 30 min. Claus Rønaa D-plan Intro to
D-plan (very
short)

07/02-2006 2 hours Henning K.
Jensen

B-planner /
Data provider

Insight in
B-plan and
logistics at
Lindø

13/02-2006 3 hours Niels J.
Jacobsen

Extern
supervisor

Getting
Computer
and
passwords

21/02-2006 2 hours Henning K.
Jensen

B-planner /
Data Provider

Lecture on
how to use
DPS and Blue
print

07/03-2006 3 hours Ole T.
Sørensen

C-planner His Daily
rutine

07/03-2006 1 hour Charlotte
Mølgaard

C-planner Her Daily
rutine

07/03-2006 30 min. Henning K.
Jensen

B-planner /
Data provider

Status Project
Orientation

24/04-2006 4 hours Claus Rønaa D-planner Insight in
D-plan and
work process

02/05-2006 2 hours Claus Rønaa D-planner Insight in
D-plan and
work process

02/05-2006 30 min. Kaare Black Lindø Byg Map of Lindø

266

267

Date Duration Person ResponsibilitySubject
of
Meeting

02/05-2006 30 min. Niels J.
Jacobsen

Extern su-
pervisor

Status
meeting
about
thesis

16/05-2006 5 hours Ivan S.
Jensen

Production
Engineer
at Simcon

Automod
and
Sockets

16/05-2006 Kasper
hallen-
borg

Supervisor Status
report
turn in

16/05-2006 Niels J.
Jacobsen

External
supervi-
sor

Status
report
turn in

29/05-2006 1 hour Henning
K. Jensen

Production
Engineer
at OSS

Provided
updated
dxf map

31/05-2006 6 hours Ali C &
Henrik
MM

Presentation
of OSS
case

Decide
Seminar

03/08-2006 -17/08-2006 100 hours Ali C &
Henrik
MM

Learning
about
MAS

MAS
Course

29/08-2006 3 hours Simcon Chief De-
veloper at
Simcon

System
emulation
workshop

23/08-2006 1 hours Yves De-
mazeau

Coordinater
of
MAGMA
research
group

MAS in
case

05/09-2006 6 hours DECIDE
members

Decide
members

Decide
Seminar
at OSS

08/11-2006 30 min Kasper
Hallen-
borg

Supervisor Presentation
discus-
sion

08/11-2006 Turning
in
Automod
dongle

15/11-2006 5 hours Case Pre-
sentation

24/11-2006 1 hour Case Pre-
sentation

27/11-2006 1 hour Yves De-
mazeau

Coordinater
og
MAGMA
research
group

MAS dis-
cussion

Appendix K

Source code

In this appendix we will show code fragments that are essential to the
project.

K.1 Reading control point and neighbours from XML
file

This code shows how the control point neighbours are read from an XML
file.

Hashtable c o n t r o l P o i n t s = new Hashtable () ;
ArrayList neighbours = new ArrayList () ;

/ / C r e a t e a r e s o l v e r wi th d e f a u l t c r e d e n t i a l s .
XmlUrlResolver r e s o l v e r = new XmlUrlResolver () ;
r e s o l v e r . C r e d e n t i a l s = System . Net . CredentialCache .

D e f a u l t C r e d e n t i a l s ;

XmlReaderSettings s e t t i n g s = new XmlReaderSettings () ;
/ / S e t t h e r e a d e r s e t t i n g s o b j e c t t o use t h e r e s o l v e r .
s e t t i n g s . XmlResolver = r e s o l v e r ;

S t r i n g f i l e P a t h = " f i l e :/// " + dialog_AddDistances . FileName ;
/ / MessageBox . Show (f i l e P a t h) ;
/ / F i l e I n f o f i l e I n f o = new F i l e I n f o (f i l e P a t h) ;

/ / C r e a t e t h e XmlReader o b j e c t .
XmlReader globalReader = XmlReader . Create (f i l e P a t h , s e t t i n g s

) ;

/ / r e a d t h e t e x t c o n t e n t o f t h e e l e m e n t s .
globalReader . Read () ;
globalReader . ReadToNextSibling (" Workbook ") ;
globalReader . ReadToDescendant (" Worksheet ") ;
globalReader . ReadToDescendant (" Table ") ;
globalReader . ReadToDescendant ("Row") ;

268

K.2. GETTING AND INSERTING CONTROL POINT DISTANCES 269

S t r i n g c o n t r o l P o i n t ;
S t r i n g neighbour ;

/ / S t a r t t o p r o c e s s e a c h c o n t r o l p o i n t
while (globalReader .Name. Equals ("Row"))
{

neighbours = new ArrayLis t () ;
XmlReader reader = globalReader . ReadSubtree () ;
reader . ReadToDescendant (" C e l l ") ;
reader . ReadToDescendant (" Data ") ;
c o n t r o l P o i n t = reader . ReadString () ;
reader . Skip () ;

while (reader . ReadToNextSibling (" C e l l "))
{

reader . ReadToDescendant (" Data ") ;
neighbour = reader . ReadString () ;
reader . Skip () ;

neighbours .Add(neighbour) ;
}

c o n t r o l P o i n t s .Add(contro lPo in t , neighbours) ;

reader . Close () ;
globalReader . ReadToNextSibling ("Row") ;

}

database . i n s e r t D i s t a n c e s (c o n t r o l P o i n t s) ;
}

K.2 Getting and inserting control point distances

The method shown below will iterate through all the keys (control points)
in the given hashmap, and for the corresponding value (a list of neighbour
control points), find the distance to each neighbour by calling the method
“getCPDistance”, which will call an AutoMod function that will return the
distance between two control points. The control point, its neighbour an
their distance are then added to the MySQL database with the method “in-
sertDistance”.

i n t e r n a l void i n s e r t D i s t a n c e s (Hashtable c o n t r o l P o i n t s)
{

openDBConnection () ;

S t r i n g sqlCommand = "CREATE TABLE IF NOT EXISTS d i s t a n c e " +
" (" +
" CP1 VARCHAR(2 5 5) NOT NULL, " +
" CP2 VARCHAR(2 5 5) NOT NULL, " +

270 APPENDIX K. SOURCE CODE

" d i s t a n c e DOUBLE NOT NULL, " +
" PRIMARY KEY (CP1 , CP2) " +
") " ;

OdbcCom = new OdbcCommand(sqlCommand , OdbcCon) ;
OdbcCom . ExecuteNonQuery () ;

foreach (Dict ionaryEntry d in c o n t r o l P o i n t s)
{

S t r i n g c o n t r o l P o i n t = (S t r i n g) d . Key ;
ArrayList neighbours = (ArrayList) d . Value ;
S t r i n g d i s t a n c e ;

foreach (S t r i n g neighbour in neighbours)
{

d i s t a n c e = Feeder . g e t I n s t a n c e () . getCPDistance (contro lPo int ,
neighbour) ;

i n s e r t D i s t a n c e ("CP_"+contro lPo int , "CP_"+neighbour , d i s t a n c e
) ;

}
}
closeDBConnection () ;

}

p r i v a t e void i n s e r t D i s t a n c e (S t r i n g contro lPo int , S t r i n g neighbour ,
S t r i n g d i s t a n c e)

{
S t r i n g sqlCommand = "REPLACE INTO d i s t a n c e " +

" VALUES (’ " + c o n t r o l P o i n t + " ’ , " + " ’ " + neighbour + " ’ , "
+ d i s t a n c e + ") " ;

OdbcCom = new OdbcCommand(sqlCommand , OdbcCon) ;
OdbcCom . ExecuteNonQuery () ;

}

K.3 Coordinate of control point on arc path

This code shows how the coordinate of a control point located on an arc
path is calculated.

/ / T r a n s l a t e (cenX , ceny) t o (0 , 0) and (begX , begY) a c c o r d i n g l y
i f (cenX > 0)

begX0 = begX − cenX ;
e lse

begX0 = begX + cenX ;
i f (centerY > 0)

begY0 = begY − cenY ;
e lse

begY0 = begY + cenY ;

/ / C a l c u l a t e r a d i u s og c i r c u m f e r e n c e
radius = Math . Sqr t (Math . Pow(begX0 , 2) + Math . Pow(begY0 , 2)) ;
c i rcumference = 2 * Math . PI * radius ;

K.4. COORDINATE OF CONTROL POINT ON STRAIGHT LINE
PATH 271

/ / T r a n s l a t e (begX0 , begY0) t o t h e u n i t c i r c l e
begX0Unit = begX0 / radius ;
begY0Unit = begY0 / radius ;

/ / C a l c u l a t e begAngle
begAngle = Math . Acos (begX0Unit) * (180 / Math . PI) ;

/ / C a l c u l a t e begCPangle , i t w i l l on ly be t h e a b s o l u t e v a l u e
begCPangle = d i s t a n c e * (360 / circumference) ;

/ / C a l c u l a t e CPangle
i f (angle < 0)

CPangle = begAngle − begCPangle ;
e lse

CPangle = begAngle + begCPangle ;

/ / C a l c u l a t e t h e c o o r d i n a t e o f t h e c o n t r o l p o i n t
/ / in t h e u n i t c i r c l e
coordX0Unit = Math . Cos (CPangle * (Math . PI / 180)) ;
coordY0Unit = Math . Sin (CPangle * (Math . PI / 180)) ;

/ / M u l t i p ly u n i t c o o r d i n a t e s wi th r a d i u s t o t r a n s l a t e b a c k
coordX0 = coordX0Unit * radius ;
coordY0 = coordY0Unit * radius ;

/ / T r a n s l a t e (cenX , cenY) b a c k t o o r i g i n a l c o o r d i n a t e s , and
/ / t r a n s l a t e (coordX0 , coordY0) a c c o r d i n g l y t o g e t (coordX , coordY)
i f (centerX > 0)

coordX = coordX0 + cenX ;
e lse

coordX = coordX0 − cenX ;
i f (centerY > 0)

coordY = coordY0 + cenY ;
e lse

coordY = coordY0 − cenY ;

K.4 Coordinate of control point on straight line path

This code shows how the coordinate of a control point located on a straight
line path is calculated.

/ / Check whe the r i t i s a v e r t i c a l l i n e
i f (begX == endX)
{

coordX = begX ;
i f (endY > begY)

coordY = begY + d ;
e lse

coordY = begY − d ;
}
/ / The l i n e has a s l o p e , i t ’ s no t a v e r t i c a l l i n e
e lse

272 APPENDIX K. SOURCE CODE

{
/ / f i n d l i n e S l o p e (a) and y I n t e r c e p t (b) in e q u a t i o n y=ax+b
l i n e S l o p e = (endY − begY) / (endX − beginX) ;
y I n t e r c e p t = begY − l i n e S l o p e * beginX ;

/ / S o l v e s e c o n d d e g r e e e q u a t i o n
A = 1 + Math . Pow(l ineS lope , 2) ;
B = 2 * l i n e S l o p e * (y I n t e r c e p t − begY) − 2 * begX ;
C = Math . Pow(begX , 2) + Math . Pow ((y I n t e r c e p t − begY) , 2) −

Math . Pow(dis tance , 2) ;

coordX1 = (−B + Math . Sqr t (Math . Pow(B , 2) − 4 * A * C)) /
(2 * A) ;

coordX2 = (−B − Math . Sqr t (Math . Pow(B , 2) − 4 * A * C)) /
(2 * A) ;

/ / P i c k t h e s o l u t i o n f o r coordX t h a t l i e s be tween begX og
endX

i f (endX > begX)
{

i f (coordX1 >= begX && coordX1 <= endX)
coordX = coordX1 ;

e lse i f (coordX2 >= begX && coordX2 <= endX)
coordX = coordX2 ;

}
e lse
{

i f (coordX1 <= begX && coordX1 >= endX)
coordX = coordX1 ;

e lse i f (coordX2 <= begX && coordX2 >= endX)
coordX = coordX2 ;

}

coordY = l i n e S l o p e * coordX + y I n t e r c e p t ;

K.5 Middleware socket communication and reflection

The code below shows how the middleware handles method calls from the
Multi-Agent System.

publ ic void l i s t e n S o c k e t ()
{

t r y
{

/ / Check i f t h e r e i s a c l i e n t (MAS) , which wants t o c o n n e c t
while (! t c p L i s t e n e r . Pending () && ! exi tThread)
{

Thread . Sleep (1 0) ;
}
i f (! exi tThread)
{

s o c k e t F o r C l i e n t = t c p L i s t e n e r . AcceptSocket () ;

K.5. MIDDLEWARE SOCKET COMMUNICATION AND
REFLECTION 273

networkStream = new NetworkStream (s o c k e t F o r C l i e n t) ;
streamWriter = new StreamWriter (networkStream) ;
streamReader = new StreamReader (networkStream) ;

i f (s o c k e t F o r C l i e n t . Connected)
{

S t r i n g t h e S t r i n g = " " ;
t r y
{

t h e S t r i n g = streamReader . ReadLine () ;

/ / E x t r a c t methodname and arguments t o method
S t r i n g methodName = CommaStringParser . getMethodName (

t h e S t r i n g) ;
S t r i n g [] arguments = CommaStringParser . getArguments (

t h e S t r i n g) ;

Type objectType = t h i s . GetType () ;
MethodInfo methodInfo = objectType . GetMethod (methodName)

;

i f (methodInfo == n u l l)
{

MessageBox . Show(" Ingen Metoder der hedder : " +
t h e S t r i n g) ;

streamWriter . WriteLine ("unknown method ") ;
streamWriter . Flush () ;

}
e lse
{

/ / E x e c u t e method
methodInfo . Invoke (t h i s , arguments) ;

}
/ / Wait f o r a n o t h e r method c a l l

l i s t e n S o c k e t () ;
}
ca tch (System . IO . IOException)
{

MessageBox . Show(" C l i e n t (MAS) has quit , Middleware w i l l
e x i t now") ;

c l o s e S o c k e t () ;
Appl icat ion . E x i t () ;

}
}

}
}
f i n a l l y
{

threadStopped = true ;
}

}

274 APPENDIX K. SOURCE CODE

K.6 Middleware AutoMod communication and reflec-
tion

The code below shows how the middleware handles method calls from the
running AutoMod model.

p r i v a t e void amx_OnUserEvent (i n t i , S t r i n g s t r)
{

switch (i)
{

case 0 : / / A method c a l l c o n t a i n e d in t h e s t r i n g s t r t h a t i s
comma s e p a r a t e d

executeMethod (s t r) ;
break ;

case 1 :
amx . S e t V a r i a b l e (" V_animating " , getAnimate ()) ;
break ;

case 2 :
/ / A r e q u e s t t o c o n v e r t a L o c a t i o n t o a QueuePtr
getQueuePtrFromCP () ;
break ;

case 3 :
/ / Her f å r v i en r e q u e s t på a t f å k o n v e r t e r e t en L o c a t i o n om

t i l en P r o c e s s P t r
getProcessPtrFromCP () ;
break ;

}
}

p r i v a t e void executeMethod (S t r i n g s t r)
{

S t r i n g methodName = CommaStringParser . getMethodName (s t r) ;
S t r i n g [] arguments = CommaStringParser . getArguments (s t r) ;

Type objectType = t h i s . GetType () ;
MethodInfo methodInfo = objectType . GetMethod (methodName) ;

i f (methodInfo == n u l l)
{

System . Windows . Forms . MessageBox . Show(" Ingen Metoder der hedder
: " + methodName) ;

}
e lse
{

methodInfo . Invoke (t h i s , arguments) ;
}

}

K.7. COMMA STRING PARSER 275

K.7 Comma string parser

The Multi-Agent System and the AutoMod model can execute methods in
the middleware, which is done by reflection. The middleware receives a
comma separated string which it has to parse to execute a method with the
parameters contained in the received string. The comma string parser has
methods for returning method name and arguments from such a comma
string. The code is shown below.

c l a s s CommaStringParser
{

p r i v a t e s t a t i c char [] s p l i t t e r = { ’ , ’ } ;

publ ic s t a t i c i n t getNumOfArguments (S t r i n g s t r)
{

i n t numOfArguments = 0 ;
S t r i n g [] s p l i t t e t S t r i n g = s t r . S p l i t (s p l i t t e r) ;

numOfArguments = s p l i t t e t S t r i n g . Length − 1 ;
return numOfArguments ;

}

publ ic s t a t i c S t r i n g getArgumentAtPosition (S t r i n g s t r , i n t pos)
{

S t r i n g [] s p l i t t e t S t r i n g = s t r . S p l i t (s p l i t t e r) ;
i f (pos > (s p l i t t e t S t r i n g . Length − 1))

return n u l l ;
return s p l i t t e t S t r i n g [pos] ;

}

publ ic s t a t i c S t r i n g [] getArguments (S t r i n g s t r)
{

S t r i n g [] s p l i t t e t S t r i n g = s t r . S p l i t (s p l i t t e r) ;
S t r i n g [] arguments = new S t r i n g [s p l i t t e t S t r i n g . Length−1] ;
for (i n t i = 1 ; i < s p l i t t e t S t r i n g . Length ; i ++)

arguments [i − 1] = s p l i t t e t S t r i n g [i] ;
return arguments ;

}

publ ic s t a t i c s t r i n g getMethodName (S t r i n g s t r)
{

S t r i n g [] s p l i t t e t S t r i n g = s t r . S p l i t (s p l i t t e r) ;
return s p l i t t e t S t r i n g [0] ;

}
}

Bibliography

[1] The foundation for intelligent physical agents. http://www.fipa.org.

[2] Multi-agent systems lab. the distributed vehicle monitoring testbed.
http://dis.cs.umass.edu/research/dvmt/.

[3] Introduction to algorithms. MIT Press, Cambridge, MA, USA, 2001.

[4] Ansøgning om it-korridor projektet - decide, April 2005.

[5] Bang & olufsen design philosophy, October 2006.

[6] Sibel Adalý and Leo Pigaty. The darpa advanced logistics project. An-
nals of Mathematics and Artificial Intelligence, 37(4):409–452, November
2003.

[7] Zafeer Alibhai. What is Contract Net interaction Protocol?, July 2003.

[8] Eduardo Alonso. In3016/inm326 software agents. multi-agent sys-
tems: Communication, 2005.

[9] Sara Baase and Allen Van Gelder. Computer Algorithms - Introduction to
Design and Analysis. Addison Wesley Longman, 2000.

[10] Fabio Bellifimine, Giovanni Caire, Agostino Poggi, and Giovanni Ri-
massa. Jade - A White Paper. EXP in search of innovation, 3(3):6–19,
2003.

[11] Rafael H. Bordini and Jomi F. Hübner. A Java-based interpreter for an
extended version of AgentSpeak, February 2007.

[12] David Brackeen, Bret Barker, and Laurence Vanhelswue. Developing
Games in Java. New Riders Games, 2003.

[13] Norman Carver, Victor Lesser, and Qiegang Long. Distributed Sensor
Interpretation: Modeling Agent Interpretations in DRESUN. In UMass
Technical Report, UMCS 93-75, sep 1993.

[14] Renque Corporation. Renque User Guide, 2007.

276

BIBLIOGRAPHY 277

[15] Michael Pěchouček "David Šišlák, Martin Rehák and Dušan Pavlíček".
A-globe: Agent development platform with inaccessibility and mobil-
ity support.

[16] Keith Decker. Environment centered analysis and design of coordina-
tion mechanisms. Technical Report UM-CS-1995-069, May 1995.

[17] Keith Decker and Jinjiang Li. Coordinating mutually exclusive re-
sources using GPGP. Autonomous Agents and Multi-Agent Systems,
3(2):133–157, 2000.

[18] Yves Demazeau. Usd mip course am/amp24 slides, August 2006.

[19] Computing Laboratory Department of Computing Science. JavaSim
User Guide, 1999.

[20] A BBN Technologies Document. Cougaar Architecture Document, De-
cember 2004.

[21] T. Finin and J. Weber. Draft. specification of the kqml agentcommuni-
cation language, 2003.

[22] FIPA. FIPA Communicative Act Library Specification. FIPA, 2002.

[23] FIPA. FIPA Contract Net Interaction Protocol Specification. FIPA, 2002.

[24] Tiziana Trucco (TILAB formerly CSELT) Giovanni Rimassa (Univer-
sity of Parma) Fabio Bellifemine Giovanni Caire. JADE PROGRAM-
MER’S GUIDE, August 2006.

[25] John Graham, Michael Mersic, and Keith Decker. Scalability and
scheduling in an agent architecture.

[26] John R. Graham, Keith S. Decker, and Michael Mersic. Decaf - a flexible
multi agent system architecture. Autonomous Agents and Multi-Agent
Systems, 7(1-2):7–27, 2003.

[27] John Robert Graham. Real-time scheduling in distributed multi agent sys-
tems. PhD thesis, 2001. Professor In Charge-Keith S. Decker.

[28] Dr. Mark Greaves. Survivable Logistics Information Systems, Septem-
ber 2002.

[29] Kasper Hallenborg and Yves Demazeau. Dynamical control in large-
scale material handling systems through agent technology. In IAT ’06:
Proceedings of the IEEE/WIC/ACM international conference on Intelligent
Agent Technology, pages 637–645, Washington, DC, USA, 2006. IEEE
Computer Society.

278 BIBLIOGRAPHY

[30] Aaron Helsinger, Karl Kleinmann, and Marshall Brinn. A framework
to control emergent survivability of multi agent systems. In AAMAS
’04: Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 28–35, Washington, DC, USA,
2004. IEEE Computer Society.

[31] Bryan Horling, Victor Lesser, Regis Vincent, Tom Wagner, Anita Raja,
Shelley Zhang, Keith Decker, and Alan Garvey. The TAEMS White
Paper, jan 1999.

[32] INPG IGN. Generalisation modelling using an agent paradigm. Tech-
nical Report ESPRIT / LTR / 24 939, 1998.

[33] Acronymics. Inc. An integrated toolkit for constructing intelligent
software agents, 2004.

[34] Nicholas R. Jennings. On agent-based software engineering. Artificial
Intelligence, 177(2):277–296, 2000.

[35] Y. Labrou, T. Finin, and Y. Peng. The current landscape of agent com-
munication languages, 1999.

[36] Yannis Labrou and Tim Finin. A Proposal for a new KQML Specifica-
tion. Technical Report TR CS-97-03, Baltimore, MD 21250, 1997.

[37] Jaron Collis Divine Ndumu Intelligent Systems Research Group BT
Labs. ZEUS Technical Manual, September 1999.

[38] J. C. Collis D. T. Ndumu H. S. Nwana L. C. Lee. The ZEUS Agent
Building Tool-kit. BT Technology Journal, 16(3):60–68, 1998.

[39] GoldSim Technology Group LLC. GoldSim User Guide, Probalistic Sim-
ulation Environment, 2007.

[40] Agent Oriented Software Pty. Ltd. Jack intelligent agents - summary
of an agent infrastructure.

[41] Agent Oriented Software Pty. Ltd. JACK Intelligent Agents™, Agent
Manual, 2006.

[42] Foster McGeary. Decaf programming: An introduction. April 2001.

[43] A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In
Proceedings of the First Intl. Conference on Multiagent Systems, San Fran-
cisco, 1995.

[44] inc Realtime technologies. SimCreator User Guide, 2004.

[45] Brooks Software. AutoMod 12.0. User’s Guide, 2005.

BIBLIOGRAPHY 279

[46] R. Systems. An integrated toolkit for constructing intelligent software
agents, 1999.

[47] Giovanni Caire (TILAB formerly CSELT). JADE TUTORIAL, JADE
PROGRAMMING FOR BEGINNERS, December 2003.

[48] D. Šišlák, M. Rollo, and M. Pěchouček. A-globe: Agent platform
with inaccessibility and mobility support. In M. Klusch, S. Ossowski,
V. Kashyap, and R. Unland, editors, Cooperative Information Agents VIII,
number 3191 in LNAI. Springer-Verlag, Heidelberg, sep 2004.

[49] David E. Wilkins and Karen L. Myers. A multiagent planning archi-
tecture. In Artificial Intelligence Planning Systems, pages 154–163, 1998.

[50] David E. Wilkins, Karen L. Myers, Marie desJardins, and et al. Multi-
agent planning architecture - mpa version 1.8.

[51] Michael Wooldridge. Practical reasoning with procedural knowledge.
In Formal and Applied Practical Reasoning, pages 663–678, 1996.

[52] Michael Wooldridge. Introduction to MultiAgent Systems. John Wiley
and Sons, 2002.

	I Background
	DECIDE Project
	Partners
	Cases

	Project Description
	Case study
	Researching and understanding the case
	Planning and logistics
	The B-plan
	The C-plan
	The D-plan
	Areas and Production Flow

	Domain Entities
	Transportation vehicles
	Storage locations
	Ship blocks
	Buildings
	The road system

	Overall system requirements
	Demarcation of project
	Objectives

	Project Workflow

	Related Work
	Coordinating Mutually Exclusive Resources using GPGP
	The Advanced Logistics Technology project
	The Ultra*Log program
	DVMT
	ACROSS
	Summary

	II Analysis
	Simulation
	What is Simulation?
	Simulator requirements
	Simulation tools
	AutoMod
	Dymola
	GoldSim
	JavaSim
	Micro Saint
	Simcad Pro
	SimCreator
	Simprocess
	Simul8
	Renque

	Summary

	Multi-Agent System
	What is an Agent?
	Reactive Agents
	Proactive Agents
	Social Agents
	Cognitive Agents

	The Agent Environment
	What is a Multi-Agent System?
	The AEIO paradigm
	BDI Agent Architecture
	Organization of Agents
	Agent Interaction
	KQML
	FIPA-ACL
	Publish-Subscribe model

	Framework requirements
	Suitable Frameworks
	A-globe
	AgentBuilder
	Cougaar
	DECAF
	JACK
	JADE
	Jason
	MadKit
	MPA
	ZEUS

	Summary

	Middleware
	Definition and middleware types
	The need for a Middleware Application
	Types of Middleware
	Middleware Type alternatives for AutoMod

	III Design
	Data structures
	Graph Representation
	TAEMS

	Algorithms
	Path-finding basics
	Breadth-First Search
	A* Search
	Dijkstra's algorithm
	Generalized Partial Global Planning
	The Local Scheduler
	GPGP Coordinating Mechanisms

	Solution Strategies
	Organization of agents
	Planner Agents
	Kamag Vehicle Agents
	The Coordinator Agent
	Alternative agent placements

	Agent Interaction
	Agent Environment
	Finding The Shortest Path
	Find The Nearest Location
	Conflict Resolution
	Coordination of transports
	Summary

	Simulation Model
	Functional requirements
	Elements in a manufacturing system
	Modeling the physical elements
	Ship Blocks Design
	Buildings
	The road system

	Modeling the virtual control
	Controlling KAMAG vehicles
	Controlling queues
	External access to simulation model

	Placing the physical elements
	Communication

	DECAF
	Agents
	Agent Capabilities
	C-planner
	D-Planner
	KAMAG
	Init Agent
	Communication Agent

	Cougaar
	A brief overview of the Cougaar framework
	Cougaar Methology
	Agent Enumeration
	Role/Relationship Analysis
	Kamag Vehicle Agent
	Coordinater Agent
	Planner Agent

	Plugin Enumeration
	Publish/Subscribe Analysis
	Task Grammer
	Plan Element Map
	Asset/Propety Analysis
	Execution Monitoring/Dynamic Replanning
	Node analysis
	The final design
	Evaluation of the Cougaar framework

	Middleware
	Feeder Mode
	Socket Mode
	Class Diagram

	IV Implementation and Test
	Implementation
	AutoMod
	Queue logic
	Vehicle logic
	Time event generation

	Middleware
	Distance calculation of neighboring control points
	Coordinate Calculation of Control Points
	Middleware communication and reflection

	DECAF
	Modifications to the DECAF framework
	Running DECAF from Eclipse with ANT
	Message sending in DECAF

	Cougaar
	Property groups and Assets
	Organizing agents
	Interaction
	Environment and RoutePlanner

	Test
	Simulation
	Test case : Create ship block
	Test case : Remove ship block
	Test case : Transport ship block
	Test case : Painting of ship blocks at painting halls.

	DECAF
	Start and initialization
	Requesting transports

	Cougaar
	Test case : controlling basic functionality

	V Reflection and Future Work
	Discussion and Conclusion
	Alternative approaches
	Overall alternatives
	Alternative Agent Organization

	AutoMod
	DECAF
	Cougaar
	Middleware
	The learning process
	Future Work

	VI Appendix
	Glossary
	Acronyms
	English-Danish Translations

	Research Phase
	Aerial Overview of OSS
	Miscellaneous problems
	Production Flow

	Example of a C-plan Dayreport
	DECAF
	An overview
	The architecture
	Plan Editor
	Starting, Editing and Generating

	COUGAAR
	What Kind Of Problem is Suitable to a Cougaar solution?
	Architecture
	Cougaar Agents
	Blackboard

	Component Model

	Database
	Tables and their content
	MySQL Server Installation Guide
	Setting up the MySQL ODBC Connector
	Howto insert Ship Block Data into Database

	Using Automod
	Getting started
	New project
	Saving Your Project Correctly
	Saved project

	Loads
	Process
	Queues
	Variables
	Functions
	Source files
	Placing your graphics

	Automod ActiveX API
	CallFunction method
	CloseModel method
	DisplayView method
	GetVariable method
	OpenLogFile method
	OpenModel method
	SetVariable method

	Middleware Classes
	Program
	Mode
	Feeder
	SocketComm
	AmodRunX
	Database
	ShipBlock
	CommaStringParser

	Journal
	Source code
	Reading control point and neighbours from XML file
	Getting and inserting control point distances
	Coordinate of control point on arc path
	Coordinate of control point on straight line path
	Middleware socket communication and reflection
	Middleware AutoMod communication and reflection
	Comma string parser

